Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectric modulus response of CaCu3Ti4O12 ceramic

Li Sheng-Tao Wang Hui Lin Chun-Jiang Li Jian-Ying

Dielectric modulus response of CaCu3Ti4O12 ceramic

Li Sheng-Tao, Wang Hui, Lin Chun-Jiang, Li Jian-Ying
PDF
Get Citation
  • The DC conductivity of the CaCu3Ti4O12 ceramic is considerable at low frequency. The dielectric properties of the CaCu3Ti4O12 ceramics are analyzed by dielectric spectrum, and the two relaxation processes are characterized by the dielectric modulus. The two relaxation processes are considered which are dominated by the electronic relaxation of deep bulk traps at the depletion layer edge. The low-frequency and high-frequency relaxation processes are attributed to oxygen-vacancy-related defect and native defect, respectively. It is proved that the modulus response of the CaCu3Ti4O12 ceramic is equivalent to conductivity response at high temperature (low frequency), and the peak value of the M" is inversely proportional to capacitance. The activation energies calculated by conductivity and modulus are equivalent to each other. The modulus spectrum is more effective to the material which has high DC conductivity at low frequency such as CCTO ceramic.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972118, 50977071, 51177121).
    [1]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 Solid State Chem. 151 323

    [2]

    Ramirez A, Subramanian M, Gardel M, Blumberg G, Li D, Vogt D, Shapiro S M 2000 Solid State Comuun. 115 217

    [3]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [5]

    Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912

    [6]

    Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903

    [7]

    Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902

    [8]

    Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201

    [9]

    Li J, Li B, Zhai D, Li S T, Alim M A 2006 J. Phys. D:Appl. Phys. 39 4969

    [10]

    Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302 (in Chinese) [成鹏飞, 李盛涛, 李建英 2012 物理学报 61 187302]

    [11]

    Cowley A M 1966 J. Appl. Phys. 37 3024

    [12]

    Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2003 Phys. Rev. B 70 144106

    [13]

    Zhang L, Tang Z J 2003 Phys. Rev. B 70 174306

    [14]

    Jia R, Gu F, Wu Z H, Zhao X T, Li J Y 2012 Acta Phys. Sin. 61 207701 (in Chinese) [贾然, 顾访, 吴珍华, 赵学童, 李建英 2012 物理学报 61 207701]

    [15]

    Yang Y 2009 Ph.D. Dissertation (Xi'an:Xi'an Jiaotong University) (in Chinese) [杨雁 2009 博士学位论文(西安:西安交通大学)]

    [16]

    Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D:Appl. Phys. 38 1824

    [17]

    Yu A Y C, Snow E H 1968 J. Appl. Phys. 39 3008

  • [1]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 Solid State Chem. 151 323

    [2]

    Ramirez A, Subramanian M, Gardel M, Blumberg G, Li D, Vogt D, Shapiro S M 2000 Solid State Comuun. 115 217

    [3]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [5]

    Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912

    [6]

    Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903

    [7]

    Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902

    [8]

    Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201

    [9]

    Li J, Li B, Zhai D, Li S T, Alim M A 2006 J. Phys. D:Appl. Phys. 39 4969

    [10]

    Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302 (in Chinese) [成鹏飞, 李盛涛, 李建英 2012 物理学报 61 187302]

    [11]

    Cowley A M 1966 J. Appl. Phys. 37 3024

    [12]

    Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2003 Phys. Rev. B 70 144106

    [13]

    Zhang L, Tang Z J 2003 Phys. Rev. B 70 174306

    [14]

    Jia R, Gu F, Wu Z H, Zhao X T, Li J Y 2012 Acta Phys. Sin. 61 207701 (in Chinese) [贾然, 顾访, 吴珍华, 赵学童, 李建英 2012 物理学报 61 207701]

    [15]

    Yang Y 2009 Ph.D. Dissertation (Xi'an:Xi'an Jiaotong University) (in Chinese) [杨雁 2009 博士学位论文(西安:西安交通大学)]

    [16]

    Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D:Appl. Phys. 38 1824

    [17]

    Yu A Y C, Snow E H 1968 J. Appl. Phys. 39 3008

  • [1] Wang Hui, Lin Chun-Jiang, Li Sheng-Tao, Li Jian-Ying. Investigation on relaxation loss mechanism of CaCu3Ti4O12 ceramic. Acta Physica Sinica, 2013, 62(8): 087702. doi: 10.7498/aps.62.087702
    [2] Jia Ran, Gu Fang, Wu Zhen-Hua, Zhao Xue-Tong, Li Jian-Ying. Dielectric properties of CaCu3Ti4O12 ceramics prepared by a simplified coprecipitation method. Acta Physica Sinica, 2012, 61(20): 207701. doi: 10.7498/aps.61.207701
    [3] Xu Xiao-Guang, Wang Chun-Zhong, Liu Wei, Meng Xing, Sun Yuan, Chen Gang. Ab initio study of the effects of Mg doping on electronic structure of Li(Co , Al)O2. Acta Physica Sinica, 2005, 54(1): 313-316. doi: 10.7498/aps.54.313
    [4] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Deng Chao-Sheng, Guo Ai-Min. The localized properties of electronic states and conductivity of DNA sequence. Acta Physica Sinica, 2006, 55(10): 5562-5567. doi: 10.7498/aps.55.5562
    [5] Sui Bing-Cai, Fang Liang, Zhang Chao. Conductance of single-electron transistor with single island. Acta Physica Sinica, 2011, 60(7): 077302. doi: 10.7498/aps.60.077302
    [6] Wu Yan-Rui, Chen Xiao-Shuang, Fu Ying, Lu Wei. Dependence of anisotropically conductive adhesive high-frequency signal transmission on conductive particle property. Acta Physica Sinica, 2007, 56(6): 3509-3514. doi: 10.7498/aps.56.3509
    [7] Quan Jun, T. C. Au Yeung, Shao Le-Xi. Investigation on the dynamic conductance of mesoscopic system based on the self-consistent transport theory. Acta Physica Sinica, 2011, 60(8): 087201. doi: 10.7498/aps.60.087201
    [8] Chen Huan-Ting, Lü Yi-Jun, Chen Zhong, Zhang Hai-Bing, Gao Yu-Lin, Chen Guo-Long. Analysis of degradation mechanism of GaN blue light emitting diode by the characteristics of capacitance and conductance. Acta Physica Sinica, 2009, 58(8): 5700-5704. doi: 10.7498/aps.58.5700
    [9] Tang Na-Si, Yan Xiao-Hong, Ding Jian-Wen. The effects of both length and tube-diameter on the conductance of single-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(1): 333-337. doi: 10.7498/aps.54.333
    [10] Yan Xiao-Hong, Deng Yu-Xiang, Tang Na-Si. Electron transport through a quantum dot ring. Acta Physica Sinica, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
  • Citation:
Metrics
  • Abstract views:  1146
  • PDF Downloads:  1187
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2012
  • Accepted Date:  13 December 2012
  • Published Online:  20 April 2013

Dielectric modulus response of CaCu3Ti4O12 ceramic

  • 1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50972118, 50977071, 51177121).

Abstract: The DC conductivity of the CaCu3Ti4O12 ceramic is considerable at low frequency. The dielectric properties of the CaCu3Ti4O12 ceramics are analyzed by dielectric spectrum, and the two relaxation processes are characterized by the dielectric modulus. The two relaxation processes are considered which are dominated by the electronic relaxation of deep bulk traps at the depletion layer edge. The low-frequency and high-frequency relaxation processes are attributed to oxygen-vacancy-related defect and native defect, respectively. It is proved that the modulus response of the CaCu3Ti4O12 ceramic is equivalent to conductivity response at high temperature (low frequency), and the peak value of the M" is inversely proportional to capacitance. The activation energies calculated by conductivity and modulus are equivalent to each other. The modulus spectrum is more effective to the material which has high DC conductivity at low frequency such as CCTO ceramic.

Reference (17)

Catalog

    /

    返回文章
    返回