Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel microwave power sige heterojunction bipolar transistor with high thermal stability over a wide temperature range

Lu Dong Jin Dong-Yue Zhang Wan-Rong Zhang Yu-Jie Fu Qiang Hu Rui-Xin Gao Dong Zhang Qing-Yuan Huo Wen-Juan Zhou Meng-Long Shao Xiang-Peng

Novel microwave power sige heterojunction bipolar transistor with high thermal stability over a wide temperature range

Lu Dong, Jin Dong-Yue, Zhang Wan-Rong, Zhang Yu-Jie, Fu Qiang, Hu Rui-Xin, Gao Dong, Zhang Qing-Yuan, Huo Wen-Juan, Zhou Meng-Long, Shao Xiang-Peng
PDF
Get Citation
  • Thermal instability of power SiGe heterojunction bipolar transistor (HBT) at high current over a wide temperature range restricts the applications of the device in RF and microwave circuits. In order to improve the thermal instability, the influences of Ge profile in a base region on the electrical and thermal characteristics of microwave power SiGe HBT are studied with the aid of the model of multi-finger power SiGe HBT established by SILVACO TCAD. It is shown that for the HBT with graded step Ge profile, a higher cut-off frequency fT can be achieved due to the accelerating electric field caused by the graded step Ge concentration in the base region when compared with the device with uniform Ge profile. The influences of temperature on current gain β and fT are weakened, which avoids the drift of electrical characteristics over a wide temperature range. Although the temperature of device is lowered, the temperature of each emitter finger is still non-uniform. Considering the difference in heat dissipation among emitter fingers, a new device with non-uniform emitter finger spacing in layout and a graded step Ge profile in base region is designed. For the new device, the uniformity of temperature among emitter fingers is achieved, higher fT is kept, β and fT are less sensitive to temperature variation. Hence the thermal instability is obviously improved compared with the device with uniform emitter finger spacing and uniform Ge profile in base region, indicating the superiority of the new device at high current over a wide temperature range.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059, 60776051, 61006049), the Beijing Municipal Natural Science Foundation, China (Grant No. 4082007), the Beijing Municipal Trans-Century Talent Project, China (Grant No. 67002013200301), the Beijing Municipal Education Committee, China (Grant Nos. KM200710005015, KM200910005001), and Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, China.
    [1]

    Li Y, Lopez J, Lie D Y C, Chen K, Wu S, Yang T Y, Ma G K 2011 IEEE Trans. Ciruits and Systems I: Regular Papers 58 893

    [2]

    Comeau J P, Najafizadeh L, Andrews J M, Prakash A P G, Cressler J D 2007 IEEE Microwave Wirel. Components Lett. 17 349

    [3]

    Giammello V, Ragonese E, Palmisano G 2012 IEEE Trans. Microwave Theory and Techniques 60 1676

    [4]

    Joseph A J, Cressler J D, Richey D M, Niu G F 1999 IEEE Trans. Electron Dev. 46 1347

    [5]

    Zhang Y J, Zhang W R, Guo Z J, Xing G H, Lu Z Y 2012 ICMMT Beijing, China, May 5-8, 2012 p1

    [6]

    Fox R M, Lee S G, Zweidinger D T 1993 IEEE J. Solid-State Circuits 28 678

    [7]

    Zhang Q Y, Yang Z M, Jiang Z H, Zhao C 2006 Acta Phys. Sin. 55 3106 (in Chinese) [张勤远, 杨中民, 姜中宏, 赵纯 2006 物理学报 55 3106]

    [8]

    Zhu Y B, Bao Z, Yang Y J, Cai C J 2009 Acta Phys. Sin. 58 7833 (in Chinese) [朱亚波, 鲍振, 杨玉杰, 蔡存金 2009 物理学报 58 7833]

    [9]

    Lee J G, Oh T K, Kim B, Kang B K 2001 Solid State Electron. 45 27

    [10]

    Chang Y H, Chiang C C, Lee Y C, Liu C C 2002 The Proceedings of the International Electron Devices Meeting Hong Kong, 22 June, 2001 p95

    [11]

    Zhou W, Sheu S, Liou J J, Huang C I 1996 Solid State Electron. 39 1709

    [12]

    Liu Y, Bayraktaroglu 1993 Solid State Electron. 36 125

    [13]

    Rieh J S, Greenberg D, Liu Q Z, Joseph A J, Freeman G, Ahlgren D C 2005 IEEE Trans. Electron Dev. 52 2744

    [14]

    Xiao Y, Zhang W R, Jin D Y, Chen L, Wang R Q, Xie H Y 2011 Acta Phys. Sin. 60 044402 (in Chinese) [肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云 2011 物理学报 60 044402]

    [15]

    Harame D L, Comfort J H, Cressler J D, CrabbC E F, Sun J Y C, Meyerson B S, Tice T 1995 IEEE Trans. Electron Dev. 4 455

    [16]

    Song J, Yuan J S, Schwierz F, Schipanski D 1996 Proceedings of the Third IEEE International Conference on Electronics, Circuits and Systems (ICECS) 2 876

    [17]

    Patri V S, Kumar M J 1999 IEE Proc.-Circuits Dev. Syst. 146 291

    [18]

    Jin D Y, Zhang W R, Chen L, Fu Q, Xiao Y, Wang R Q, Zhao X 2011 Chin. Phys. B 20 064401

  • [1]

    Li Y, Lopez J, Lie D Y C, Chen K, Wu S, Yang T Y, Ma G K 2011 IEEE Trans. Ciruits and Systems I: Regular Papers 58 893

    [2]

    Comeau J P, Najafizadeh L, Andrews J M, Prakash A P G, Cressler J D 2007 IEEE Microwave Wirel. Components Lett. 17 349

    [3]

    Giammello V, Ragonese E, Palmisano G 2012 IEEE Trans. Microwave Theory and Techniques 60 1676

    [4]

    Joseph A J, Cressler J D, Richey D M, Niu G F 1999 IEEE Trans. Electron Dev. 46 1347

    [5]

    Zhang Y J, Zhang W R, Guo Z J, Xing G H, Lu Z Y 2012 ICMMT Beijing, China, May 5-8, 2012 p1

    [6]

    Fox R M, Lee S G, Zweidinger D T 1993 IEEE J. Solid-State Circuits 28 678

    [7]

    Zhang Q Y, Yang Z M, Jiang Z H, Zhao C 2006 Acta Phys. Sin. 55 3106 (in Chinese) [张勤远, 杨中民, 姜中宏, 赵纯 2006 物理学报 55 3106]

    [8]

    Zhu Y B, Bao Z, Yang Y J, Cai C J 2009 Acta Phys. Sin. 58 7833 (in Chinese) [朱亚波, 鲍振, 杨玉杰, 蔡存金 2009 物理学报 58 7833]

    [9]

    Lee J G, Oh T K, Kim B, Kang B K 2001 Solid State Electron. 45 27

    [10]

    Chang Y H, Chiang C C, Lee Y C, Liu C C 2002 The Proceedings of the International Electron Devices Meeting Hong Kong, 22 June, 2001 p95

    [11]

    Zhou W, Sheu S, Liou J J, Huang C I 1996 Solid State Electron. 39 1709

    [12]

    Liu Y, Bayraktaroglu 1993 Solid State Electron. 36 125

    [13]

    Rieh J S, Greenberg D, Liu Q Z, Joseph A J, Freeman G, Ahlgren D C 2005 IEEE Trans. Electron Dev. 52 2744

    [14]

    Xiao Y, Zhang W R, Jin D Y, Chen L, Wang R Q, Xie H Y 2011 Acta Phys. Sin. 60 044402 (in Chinese) [肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云 2011 物理学报 60 044402]

    [15]

    Harame D L, Comfort J H, Cressler J D, CrabbC E F, Sun J Y C, Meyerson B S, Tice T 1995 IEEE Trans. Electron Dev. 4 455

    [16]

    Song J, Yuan J S, Schwierz F, Schipanski D 1996 Proceedings of the Third IEEE International Conference on Electronics, Circuits and Systems (ICECS) 2 876

    [17]

    Patri V S, Kumar M J 1999 IEE Proc.-Circuits Dev. Syst. 146 291

    [18]

    Jin D Y, Zhang W R, Chen L, Fu Q, Xiao Y, Wang R Q, Zhao X 2011 Chin. Phys. B 20 064401

  • [1] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [2] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [3] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [4] Anisotropic Dissipation in a Dipolar Bose-Einstein Condensate. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200025
    [5] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [6] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [7] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [8] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
  • Citation:
Metrics
  • Abstract views:  621
  • PDF Downloads:  373
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2012
  • Accepted Date:  15 January 2013
  • Published Online:  20 May 2013

Novel microwave power sige heterojunction bipolar transistor with high thermal stability over a wide temperature range

  • 1. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059, 60776051, 61006049), the Beijing Municipal Natural Science Foundation, China (Grant No. 4082007), the Beijing Municipal Trans-Century Talent Project, China (Grant No. 67002013200301), the Beijing Municipal Education Committee, China (Grant Nos. KM200710005015, KM200910005001), and Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, China.

Abstract: Thermal instability of power SiGe heterojunction bipolar transistor (HBT) at high current over a wide temperature range restricts the applications of the device in RF and microwave circuits. In order to improve the thermal instability, the influences of Ge profile in a base region on the electrical and thermal characteristics of microwave power SiGe HBT are studied with the aid of the model of multi-finger power SiGe HBT established by SILVACO TCAD. It is shown that for the HBT with graded step Ge profile, a higher cut-off frequency fT can be achieved due to the accelerating electric field caused by the graded step Ge concentration in the base region when compared with the device with uniform Ge profile. The influences of temperature on current gain β and fT are weakened, which avoids the drift of electrical characteristics over a wide temperature range. Although the temperature of device is lowered, the temperature of each emitter finger is still non-uniform. Considering the difference in heat dissipation among emitter fingers, a new device with non-uniform emitter finger spacing in layout and a graded step Ge profile in base region is designed. For the new device, the uniformity of temperature among emitter fingers is achieved, higher fT is kept, β and fT are less sensitive to temperature variation. Hence the thermal instability is obviously improved compared with the device with uniform emitter finger spacing and uniform Ge profile in base region, indicating the superiority of the new device at high current over a wide temperature range.

Reference (18)

Catalog

    /

    返回文章
    返回