Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites

Qu Jun-Rong Zheng Jian-Bang Wang Chun-Feng Wu Guang-Rong Wang Xue-Yan

Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites

Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Wang Xue-Yan
PDF
Get Citation
  • According to single-walled carbon nanotube good conductivity, baryon transmission performance, and high photoelectric conversion performance of quantum dot composite material, in this letter, we use in situ condensation method to prepare polymer/poly (2-methoxy, 5-oc-toxy)-1, 4-phenylenevinylene (MOPPV)-single walled carbon nanotubes/PbSe quantum dot composites and use X-ray diffraction, transmission electron microscope, UV-vis absorption spectroscopy to study their characteristics. The results indicate that MOPPV, SWNT and PbSe quantum dots can be effectively combined, especially the SWNT and MOPPV form a network structure in MOPPV matrix, and PbSe quantum dots, each with an average size of 5.75 nm, can be dispersed to form a coating or mosaic structure in the polymer substrate of MOPPV-SWNT, producing the light induced charge transfer phenomenon. The study of composite photoelectric performance shows that when the polymer MOPPV, SWNT, PbSe have their mass ratio of 1: 0.3: 1, the composite photoelectric performance is best: open circuit voltage is 0.556 V, short circuit current is 2.133 mA, fill factor is 34.48%, conversion efficiency is 0.452%. Compared with the polymer MOPPV-PbSe quantum dots composite materials, the optoelectronic properties are increased by 2-3 times.
    • Funds: Project supported by the Innovation Fund of Doctoral Dissertation of Northwestern Polytechnical University, China (Grant No. CX201324).
    [1]

    Declerck P, Houbertz R, Jakopic G 2008 Mater. Res. Soc. Symposium Proc. 1007 15

    [2]

    Ren J, Zheng J B, Zhao J L 2007 Acta Phys. Sin. 56 2868 (in Chinese) [任驹, 郑建邦, 赵建林 2007 物理学报 56 2868]

    [3]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 物理学报 61 138801]

    [4]

    Peng Y C, Fu G S 2009 Chin. J. Mater. Res. 23 449

    [5]

    Zhao Y, Xiong S Z, Zhang X D 2010 Acta Phys. Sin. 39 314 (in Chinese) [赵颖, 熊绍珍, 张晓丹 2010 物理学报 39 314]

    [6]

    Kymakis E, Amaratunga G A J 2002 Appl. Phys. Lett. 80 112

    [7]

    Pradhan B, Batabyal S K, Pal A J 2006 Appl. Phys. Lett. 88 093106

    [8]

    Yun D Q, Feng W, Wu H C, Li B M, Liu X Z, Yi W H, Qiang J F, Gao S, Yan S L 2008 Synthetic Met. 158 977

    [9]

    Feng Y Y, Yun D Q, Zhang X Q, Feng W 2010 Appl. Phys. Lett. 96 093301

    [10]

    Vigolo B, Mamane V, Valsaque F, Le T N H, Thabit J, Ghanbaja J, Aranda L, Fort Y, McRae E 2009 Carbon 47 411

    [11]

    Lamela H, Ehsan D, Frédéric G, Mohan B K, Jean L C 2011 Proc. SPIE 81010G 7

    [12]

    Kang P, Liu R B, Wang S, Zhang Q M 2011 Mater. Rev. 135 1019

    [13]

    Trukhanov V A, Bruevich V V, Yu D P 2011 Phys. Rev. B 84 205318

    [14]

    Du Z, Zhang N, Wang J H 2008 Chem. J. Chin. Univ. 29 902 [杜卓, 张娜, 王建华 2008 高等学校化学学报 29 902]

    [15]

    Chen W B, Yang W F, Zou H J, Tang J X, Deng L F, Li P T 2011 Acta Phys. Sin. 60 117107 (in Chinese) [陈卫兵, 杨伟丰, 邹豪杰, 汤建新, 邓林锋, 黎沛涛 2011 物理学报 60 117107]

    [16]

    Hou C Q, Zheng J B, Yang M Y 2008 Acta Photo. Sin. 37 224

    [17]

    Huang H Z 2003 Nanmaterial Analysis (1st Ed.) (Beijing: Chemical Industry Press) p243

    [18]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2011 Acta Phys. Sin. 60 117106 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2011 物理学报 60 117106]

    [19]

    Liu R X, Zhang L N, Li X Y 2012 Sci. China 42 810 [刘任晓, 张丽娜, 李学毅 2012 中国科学 42 810]

    [20]

    Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封伟, 高中扩 2008 物理学报 57 2567]

    [21]

    Christoph J B, Sean E S, Christoph W N S S 2001 Appl. Phys. Lett. 80 1288

    [22]

    Liu Z, Zhao Z F, Guo H M, Wang Y Q 2012 Acta Phys. Sin. 61 217303 (in Chinese) [刘柱, 赵志飞, 郭浩民, 王玉琦 2012 物理学报 60 217303]

    [23]

    Einosuke K, Seiki K, Akira O, Shinji A, Shinya M 2008 Appl. Phys. Lett. 92 173307

    [24]

    Voicu P, Gabriel B, Mark C H, Andrew G N, Alex Z 2008 Phys. Rev. B 78 205321

  • [1]

    Declerck P, Houbertz R, Jakopic G 2008 Mater. Res. Soc. Symposium Proc. 1007 15

    [2]

    Ren J, Zheng J B, Zhao J L 2007 Acta Phys. Sin. 56 2868 (in Chinese) [任驹, 郑建邦, 赵建林 2007 物理学报 56 2868]

    [3]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 物理学报 61 138801]

    [4]

    Peng Y C, Fu G S 2009 Chin. J. Mater. Res. 23 449

    [5]

    Zhao Y, Xiong S Z, Zhang X D 2010 Acta Phys. Sin. 39 314 (in Chinese) [赵颖, 熊绍珍, 张晓丹 2010 物理学报 39 314]

    [6]

    Kymakis E, Amaratunga G A J 2002 Appl. Phys. Lett. 80 112

    [7]

    Pradhan B, Batabyal S K, Pal A J 2006 Appl. Phys. Lett. 88 093106

    [8]

    Yun D Q, Feng W, Wu H C, Li B M, Liu X Z, Yi W H, Qiang J F, Gao S, Yan S L 2008 Synthetic Met. 158 977

    [9]

    Feng Y Y, Yun D Q, Zhang X Q, Feng W 2010 Appl. Phys. Lett. 96 093301

    [10]

    Vigolo B, Mamane V, Valsaque F, Le T N H, Thabit J, Ghanbaja J, Aranda L, Fort Y, McRae E 2009 Carbon 47 411

    [11]

    Lamela H, Ehsan D, Frédéric G, Mohan B K, Jean L C 2011 Proc. SPIE 81010G 7

    [12]

    Kang P, Liu R B, Wang S, Zhang Q M 2011 Mater. Rev. 135 1019

    [13]

    Trukhanov V A, Bruevich V V, Yu D P 2011 Phys. Rev. B 84 205318

    [14]

    Du Z, Zhang N, Wang J H 2008 Chem. J. Chin. Univ. 29 902 [杜卓, 张娜, 王建华 2008 高等学校化学学报 29 902]

    [15]

    Chen W B, Yang W F, Zou H J, Tang J X, Deng L F, Li P T 2011 Acta Phys. Sin. 60 117107 (in Chinese) [陈卫兵, 杨伟丰, 邹豪杰, 汤建新, 邓林锋, 黎沛涛 2011 物理学报 60 117107]

    [16]

    Hou C Q, Zheng J B, Yang M Y 2008 Acta Photo. Sin. 37 224

    [17]

    Huang H Z 2003 Nanmaterial Analysis (1st Ed.) (Beijing: Chemical Industry Press) p243

    [18]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2011 Acta Phys. Sin. 60 117106 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2011 物理学报 60 117106]

    [19]

    Liu R X, Zhang L N, Li X Y 2012 Sci. China 42 810 [刘任晓, 张丽娜, 李学毅 2012 中国科学 42 810]

    [20]

    Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封伟, 高中扩 2008 物理学报 57 2567]

    [21]

    Christoph J B, Sean E S, Christoph W N S S 2001 Appl. Phys. Lett. 80 1288

    [22]

    Liu Z, Zhao Z F, Guo H M, Wang Y Q 2012 Acta Phys. Sin. 61 217303 (in Chinese) [刘柱, 赵志飞, 郭浩民, 王玉琦 2012 物理学报 60 217303]

    [23]

    Einosuke K, Seiki K, Akira O, Shinji A, Shinya M 2008 Appl. Phys. Lett. 92 173307

    [24]

    Voicu P, Gabriel B, Mark C H, Andrew G N, Alex Z 2008 Phys. Rev. B 78 205321

  • [1] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 1-11. doi: 10.7498/aps.69.20191718
    [2] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
  • Citation:
Metrics
  • Abstract views:  690
  • PDF Downloads:  842
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2013
  • Accepted Date:  04 March 2013
  • Published Online:  20 June 2013

Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites

  • 1. Shaanxi Key Laboratory of Optical Information Technology, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China
Fund Project:  Project supported by the Innovation Fund of Doctoral Dissertation of Northwestern Polytechnical University, China (Grant No. CX201324).

Abstract: According to single-walled carbon nanotube good conductivity, baryon transmission performance, and high photoelectric conversion performance of quantum dot composite material, in this letter, we use in situ condensation method to prepare polymer/poly (2-methoxy, 5-oc-toxy)-1, 4-phenylenevinylene (MOPPV)-single walled carbon nanotubes/PbSe quantum dot composites and use X-ray diffraction, transmission electron microscope, UV-vis absorption spectroscopy to study their characteristics. The results indicate that MOPPV, SWNT and PbSe quantum dots can be effectively combined, especially the SWNT and MOPPV form a network structure in MOPPV matrix, and PbSe quantum dots, each with an average size of 5.75 nm, can be dispersed to form a coating or mosaic structure in the polymer substrate of MOPPV-SWNT, producing the light induced charge transfer phenomenon. The study of composite photoelectric performance shows that when the polymer MOPPV, SWNT, PbSe have their mass ratio of 1: 0.3: 1, the composite photoelectric performance is best: open circuit voltage is 0.556 V, short circuit current is 2.133 mA, fill factor is 34.48%, conversion efficiency is 0.452%. Compared with the polymer MOPPV-PbSe quantum dots composite materials, the optoelectronic properties are increased by 2-3 times.

Reference (24)

Catalog

    /

    返回文章
    返回