Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A comparative study of different potentials for molecular dynamics simulations of melting process of silicon

Zhou Nai-Gen Hu Qiu-Fa Xu Wen-Xiang Li Ke Zhou Lang

A comparative study of different potentials for molecular dynamics simulations of melting process of silicon

Zhou Nai-Gen, Hu Qiu-Fa, Xu Wen-Xiang, Li Ke, Zhou Lang
PDF
Get Citation
  • Molecular dynamic simulations of bulk melting and surface melting of Si are carried out. The atomic interactions in Si are calculated by stillinger-weber (SW), modified embedded-atom method (MEAM), Tersoff and highly optimized empirical potential (HOEP) potentials respectively. The results show that the four potentials could exhibit the fundamental laws of Si, such as thermal expansion, melting at high temperature, endothermic and volume shrinkage in melting process. However, the detailed analyses demonstrate that the Tersoff and MEAM potentials are best to describe the melting and crystal growth of Si, SW potential is the next. The HOEP potential is even unsuitable for describing the melting and crystal growth of Si.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51264032) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20114BAB206037).
    [1]

    Scheel H J, Fukuda T, Wiley J 2003 Crystal Growth Technol (Chichester: John Wiley 8c Sons) p3

    [2]

    Wang Q, Chen Z, Pu S D, Yang Q C 1996 Semicond. Optoelec. 17 224 (in Chinese) [王旗, 陈振, 浦树德, 杨晴初 1996 半导体光电 17 224]

    [3]

    Balamane H, Halicioglu T, Tiller W A 1992 Phys. Rev. B 46 2250

    [4]

    Zhou Z Y, Wang T B, Cheng Z N 1999 Acta Phys. Sin. 48 2228 (in Chinese) [周正有, 王铁兵, 程兆年 1999 物理学报 48 2228]

    [5]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262

    [6]

    Stich I, Car R, Parrinello M 1991 Phys. Rev. B 44 11092

    [7]

    Wang C Z, Chan C T, Ho K M 1992 Phys. Rev. B 45 12227

    [8]

    Tersoff J 1986 Phys. Rev. Lett. 56 632

    [9]

    Tersoff J 1988 Phys. Rev. B 38 9902

    [10]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [11]

    Baskes M I, Nelson J S, Wright A F1989 Phys. Rev. B 40 6085

    [12]

    Baskes M I 1992 Phys. Rev. B 46 2727

    [13]

    Lee B J 2007 Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 31 95

    [14]

    Lenosky T J, Sadigh B, Alonso E, Bulatov V V, de la Rubia T D, Kim J, Voter A F, Kress J D 2000 Modell. Simul. Mater. Sci. Eng. 8 825

    [15]

    Chuang F C, Ciobanu C V, Predescu C, Wang C Z, Ho K M 2005 Surf. Sci. 578 183

    [16]

    Zhou N G, Hong T, Zhou L 2012 Acta Phys. Sin. 61 028101 (in Chinese) [周耐根, 洪涛, 周浪 2012 物理学报 61 028101]

    [17]

    Yaoqi Z, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116

    [18]

    Nguyen T, Ho P S, Kwok T, Nitta C, Yip S 1986 Phys. Rev. Lett. 57 1919

    [19]

    Lutsko J F, Wolf D, Phillpot S R, Yip S 1989 Phys. Rev. B 40 2841

    [20]

    Wang H L, Wang X X, Liang H Y 2005 Acta Metall. Sin. 41 568 (in Chinese) [王海龙, 王秀喜, 梁海弋 2005 金属学报 41 568]

    [21]

    Oxtoby D W 1990 Nature 347 725

    [22]

    Jakse N, Pasturel A 2005 J. Chem. Phys. 123 244512

    [23]

    Wang J H, Fan K G, Liu Z F, Sun J P, Zhang J G, Wang Z 2007 J. Appl. Opt. 28 645 (in Chinese) [王建华, 范开果, 刘志锋, 孙建平, 张金涛, 王哲 2007 应用光学 28 645]

    [24]

    Huang X M 1997 Physics 26 37 (in Chinese) [黄新明 1997 物理 26 37]

    [25]

    Bazant M Z, Kaxiras E, Justo J F 1997 Phys. Rev. B 56 8542

    [26]

    Howell P C 2012 J. Chem. Phys. 137 224111

    [27]

    Liu Z J, Cheng X L, Zhang H, Cai L C 2004 Chin. Phys. 13 384

    [28]

    Wolf D, Okamoto P, Yip S, Lutsko J, Kluge M 1990 J. Mater. Res. 5 286

    [29]

    He A M, Qin C S, Shao J L, Wang F 2009 Acta Phys. Sin. 58 2667 (in Chinese) [何安民, 秦承森, 邵建立, 王裴 2009 物理学报 58 2667]

    [30]

    Dinsdale A T 1991 Comput. Coupl. Phase Diagram Thermochem. 15 317

    [31]

    Tsao J Y, Aziz M J, Thompson M O, Peercy P S 1986 Phys. Rev. Lett. 56 2712

  • [1]

    Scheel H J, Fukuda T, Wiley J 2003 Crystal Growth Technol (Chichester: John Wiley 8c Sons) p3

    [2]

    Wang Q, Chen Z, Pu S D, Yang Q C 1996 Semicond. Optoelec. 17 224 (in Chinese) [王旗, 陈振, 浦树德, 杨晴初 1996 半导体光电 17 224]

    [3]

    Balamane H, Halicioglu T, Tiller W A 1992 Phys. Rev. B 46 2250

    [4]

    Zhou Z Y, Wang T B, Cheng Z N 1999 Acta Phys. Sin. 48 2228 (in Chinese) [周正有, 王铁兵, 程兆年 1999 物理学报 48 2228]

    [5]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262

    [6]

    Stich I, Car R, Parrinello M 1991 Phys. Rev. B 44 11092

    [7]

    Wang C Z, Chan C T, Ho K M 1992 Phys. Rev. B 45 12227

    [8]

    Tersoff J 1986 Phys. Rev. Lett. 56 632

    [9]

    Tersoff J 1988 Phys. Rev. B 38 9902

    [10]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [11]

    Baskes M I, Nelson J S, Wright A F1989 Phys. Rev. B 40 6085

    [12]

    Baskes M I 1992 Phys. Rev. B 46 2727

    [13]

    Lee B J 2007 Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 31 95

    [14]

    Lenosky T J, Sadigh B, Alonso E, Bulatov V V, de la Rubia T D, Kim J, Voter A F, Kress J D 2000 Modell. Simul. Mater. Sci. Eng. 8 825

    [15]

    Chuang F C, Ciobanu C V, Predescu C, Wang C Z, Ho K M 2005 Surf. Sci. 578 183

    [16]

    Zhou N G, Hong T, Zhou L 2012 Acta Phys. Sin. 61 028101 (in Chinese) [周耐根, 洪涛, 周浪 2012 物理学报 61 028101]

    [17]

    Yaoqi Z, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116

    [18]

    Nguyen T, Ho P S, Kwok T, Nitta C, Yip S 1986 Phys. Rev. Lett. 57 1919

    [19]

    Lutsko J F, Wolf D, Phillpot S R, Yip S 1989 Phys. Rev. B 40 2841

    [20]

    Wang H L, Wang X X, Liang H Y 2005 Acta Metall. Sin. 41 568 (in Chinese) [王海龙, 王秀喜, 梁海弋 2005 金属学报 41 568]

    [21]

    Oxtoby D W 1990 Nature 347 725

    [22]

    Jakse N, Pasturel A 2005 J. Chem. Phys. 123 244512

    [23]

    Wang J H, Fan K G, Liu Z F, Sun J P, Zhang J G, Wang Z 2007 J. Appl. Opt. 28 645 (in Chinese) [王建华, 范开果, 刘志锋, 孙建平, 张金涛, 王哲 2007 应用光学 28 645]

    [24]

    Huang X M 1997 Physics 26 37 (in Chinese) [黄新明 1997 物理 26 37]

    [25]

    Bazant M Z, Kaxiras E, Justo J F 1997 Phys. Rev. B 56 8542

    [26]

    Howell P C 2012 J. Chem. Phys. 137 224111

    [27]

    Liu Z J, Cheng X L, Zhang H, Cai L C 2004 Chin. Phys. 13 384

    [28]

    Wolf D, Okamoto P, Yip S, Lutsko J, Kluge M 1990 J. Mater. Res. 5 286

    [29]

    He A M, Qin C S, Shao J L, Wang F 2009 Acta Phys. Sin. 58 2667 (in Chinese) [何安民, 秦承森, 邵建立, 王裴 2009 物理学报 58 2667]

    [30]

    Dinsdale A T 1991 Comput. Coupl. Phase Diagram Thermochem. 15 317

    [31]

    Tsao J Y, Aziz M J, Thompson M O, Peercy P S 1986 Phys. Rev. Lett. 56 2712

  • [1] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [2] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [3] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [4] Li Chun-Li, Duan Hai-Ming, Kerem Mardan. Molecular dynamical simulations of the melting properties of Aln(n=13–32) clusters. Acta Physica Sinica, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [5] Lan Hui-Qing, Xu Cang. Molecular dynamics simulation on friction process of silicon-doped diamond-like carbon films. Acta Physica Sinica, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [6] HE XIAN-CHANG, HU XIAO-JUN, DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
    [7] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Melting behavior of Au-Pd eutectic nanoparticle: A molecular dynamics study. Acta Physica Sinica, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [8] Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [9] Sun Shi-Gang, Wen Yu-Hua, Zhang Yang, Zhu Zi-Zhong. An atomistic simulation of structural evolution and melting characteristics of Pt nanocrystal during continuous heating. Acta Physica Sinica, 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [10] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
  • Citation:
Metrics
  • Abstract views:  1115
  • PDF Downloads:  1121
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2012
  • Accepted Date:  15 March 2013
  • Published Online:  20 July 2013

A comparative study of different potentials for molecular dynamics simulations of melting process of silicon

  • 1. School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
Fund Project:  Project supported by National Natural Science Foundation of China (Grant No. 51264032) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20114BAB206037).

Abstract: Molecular dynamic simulations of bulk melting and surface melting of Si are carried out. The atomic interactions in Si are calculated by stillinger-weber (SW), modified embedded-atom method (MEAM), Tersoff and highly optimized empirical potential (HOEP) potentials respectively. The results show that the four potentials could exhibit the fundamental laws of Si, such as thermal expansion, melting at high temperature, endothermic and volume shrinkage in melting process. However, the detailed analyses demonstrate that the Tersoff and MEAM potentials are best to describe the melting and crystal growth of Si, SW potential is the next. The HOEP potential is even unsuitable for describing the melting and crystal growth of Si.

Reference (31)

Catalog

    /

    返回文章
    返回