搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米杆高温熔化断裂弛豫性能的原子级模拟研究

卢敏 许卫兵 刘维清 侯春菊 刘志勇

引用本文:
Citation:

银纳米杆高温熔化断裂弛豫性能的原子级模拟研究

卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇

An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature

Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong
PDF
导出引用
  • 采用分子动力学模拟方法,研究了不同长度银纳米杆在不同温度弛豫过程中的结构演变过程.结果表明:银纳米杆存在一与杆长相关的临界熔断温度,该临界熔断温度随杆长增加而显著降低.当温度大于熔点而小于临界熔断温度时,体系形成一个高度无序的球形团簇,而温度大于临界熔断温度时,体系则熔断成两个球形团簇.并给出了银纳米杆的产生该熔断现象的机理.
    Based on the molecular dynamics simulation method, the evolution of Ag nanorods structure during the Ag nanorods relaxation process at various temperatures and lengths are intensively studied. The results show that there is a critical breaking temperature, which is decreasing with the increasing Ag naorods length. The Ag nanorod is melted to a highly disordered spherical cluster when the temperature is between the melting point and the critical breaking temperature. However, the Ag nanorod is melted to two spherical clusters when the temperature is above the critical breaking temperature.The physical mechanics of the structure evolution processe at various temperatures are presented.
    • 基金项目: 国家自然科学基金(批准号:10947117)资助的课题.
    [1]

    Gilmer G H, Huang H C, Roland C 1998 Comput. Mater. Sci. 12 354

    [2]

    Phys. 115 385

    [3]

    Seifert W, Carlsson N, Miller M, Pistol M E 1996 Prog. Cryst. Growth Charact. Mater. 33 423

    [4]

    Sarkar J, Khan G, Basumallick A 2007 Bull. Mater. Sci. 30 271

    [5]

    Craihead H G 2000 Science 290 1532

    [6]

    Goldstein A N, Echer C M, Alivisatos A P 1992 Science 256 1425

    [7]

    Wen Y H, Zhu Z Z, Zhu R, Gui F S 2004 Physica E 25 47

    [8]

    Liu Z, Sakamoto Y, Ohsuna T, Hiraga K, Terasaki O, Ko C H, Shin H J, Ryoo R 2000 Angew. Chem. Int. Ed. Engl. 39 3107

    [9]

    Xia Y, Yang Y, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353

    [10]

    Bilalbegovic G 2000 Solid State Commun. 115 73

    [11]

    Wang B L, Wang G H, Chen X S, Zhao J J 2003 Phys. Rev. B 67 193403

    [12]

    Link S, Wang Z L, El-Sayed M A 2000 J. Phys. Chem. B 104 7867

    [13]

    Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem.

    [14]

    Wang J L, Chen X S, Wang G H, Wang B L, Lu W, Zhao J J 2003 Phys. Rev. B 66 085408

    [15]

    Gear C W 1971 Numerial Initial Value Problems in Ordinary Differential Equation Englewood Cliffs (NJ: Prentice-Hall) 1—54

    [16]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [17]

    Ackland G J, Vitek V 1990 Phys. Rev. B 41 10324

    [18]

    Ackland G J, Tichy G, Vitek V, Finnis M W 1987 Philos. Mag. A 56 735

    [19]

    Lu M, Liu W Q, Luo F, Wei W H 2009 J. Coputat. Phys. 26 121 (in Chinese)[卢 敏、 刘维清、 罗 飞、 魏望和 2009 计算物理 26 121]

    [20]

    Nakamura K, Kitagawa T, Osari K, Takahashi K, Ono K 2006 Vacuum 80 761

    [21]

    Zhou L, Zhou N G, Song Z D 2008 Acta Metall. Sin. 44 34 (in Chinese)[周 浪、 周耐根、 宋照东 2008 金属学报 44 34]

    [22]

    Leach A R 2001 Molecular modelling: Principles and Applications (London: Prentice-Hall)

    [23]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [24]

    Kang J W, Hwang H J 2003 Comput. Mater. Sci. 27 305

  • [1]

    Gilmer G H, Huang H C, Roland C 1998 Comput. Mater. Sci. 12 354

    [2]

    Phys. 115 385

    [3]

    Seifert W, Carlsson N, Miller M, Pistol M E 1996 Prog. Cryst. Growth Charact. Mater. 33 423

    [4]

    Sarkar J, Khan G, Basumallick A 2007 Bull. Mater. Sci. 30 271

    [5]

    Craihead H G 2000 Science 290 1532

    [6]

    Goldstein A N, Echer C M, Alivisatos A P 1992 Science 256 1425

    [7]

    Wen Y H, Zhu Z Z, Zhu R, Gui F S 2004 Physica E 25 47

    [8]

    Liu Z, Sakamoto Y, Ohsuna T, Hiraga K, Terasaki O, Ko C H, Shin H J, Ryoo R 2000 Angew. Chem. Int. Ed. Engl. 39 3107

    [9]

    Xia Y, Yang Y, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353

    [10]

    Bilalbegovic G 2000 Solid State Commun. 115 73

    [11]

    Wang B L, Wang G H, Chen X S, Zhao J J 2003 Phys. Rev. B 67 193403

    [12]

    Link S, Wang Z L, El-Sayed M A 2000 J. Phys. Chem. B 104 7867

    [13]

    Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem.

    [14]

    Wang J L, Chen X S, Wang G H, Wang B L, Lu W, Zhao J J 2003 Phys. Rev. B 66 085408

    [15]

    Gear C W 1971 Numerial Initial Value Problems in Ordinary Differential Equation Englewood Cliffs (NJ: Prentice-Hall) 1—54

    [16]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [17]

    Ackland G J, Vitek V 1990 Phys. Rev. B 41 10324

    [18]

    Ackland G J, Tichy G, Vitek V, Finnis M W 1987 Philos. Mag. A 56 735

    [19]

    Lu M, Liu W Q, Luo F, Wei W H 2009 J. Coputat. Phys. 26 121 (in Chinese)[卢 敏、 刘维清、 罗 飞、 魏望和 2009 计算物理 26 121]

    [20]

    Nakamura K, Kitagawa T, Osari K, Takahashi K, Ono K 2006 Vacuum 80 761

    [21]

    Zhou L, Zhou N G, Song Z D 2008 Acta Metall. Sin. 44 34 (in Chinese)[周 浪、 周耐根、 宋照东 2008 金属学报 44 34]

    [22]

    Leach A R 2001 Molecular modelling: Principles and Applications (London: Prentice-Hall)

    [23]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [24]

    Kang J W, Hwang H J 2003 Comput. Mater. Sci. 27 305

计量
  • 文章访问数:  7250
  • PDF下载量:  841
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-01
  • 修回日期:  2010-05-12
  • 刊出日期:  2010-09-15

/

返回文章
返回