Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy

Wen Da-Dong Peng Ping Jiang Yuan-Qi Tian Ze-An Liu Rang-Su

A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy

Wen Da-Dong, Peng Ping, Jiang Yuan-Qi, Tian Ze-An, Liu Rang-Su
PDF
Get Citation
  • The rapid solidification process of liquid Cu64Zr36 alloy is simulated using a molecular dynamics method. The evolution in micro-structures are analyzed by means of pair distribution functions (PDF), Honeycutt-Andersen (H-A) bond-type index method and cluster-type index method (CTIM). It is found that both of liquid and rapidly solidified solid mostly consist of (12 0 12 0) icosahedra and their distorted (12 8/1551 2/1541 2/1431) configurations at a cooling rate of 50 K/ns, most of which are Cu-centered Cu8Zr5 clusters, followed by Cu7Zr6 and then Cu9Zr4 clusters. Size distribution of icosahedral medium-range order (IMRO) clusters linked by intercross-sharing (IS) atoms in the liquid and the glassy solid presents the magic number sequences of 13, 19, 25,···and 13, 19, 23, 25, 29, 37···, respectively. The track of atoms reveals no icosahedral clusters in rapidly solidified solid that can be detected in the liquid alloy. Onset temperature of configuration heredity emerges in the supercooled liquid region of Tm–Tg. A direct and perfect heredity of icosahedra is found to be dominant and a distinct ascent in heredity fraction takes place at Tg. Compared with (12 8/1551 2/1541 2/1431) distorted icosahedra, (12 0 12 0) standard icosahedra are of high structural stability and configurational genetic ability below Tg, whereas only a few can keep their chemical composition unchanged. By partial heredity, even some IMRO clusters in super-cooled liquid can be transmitted to glassy alloy.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071065), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100161110001).
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Park E S, Kim D H, Kim W T 2005 Appl. Phys. Lett. 86 061907

    [4]

    Xia M X, Meng Q G, Zhang S G, Ma C L, Li J G 2006 Acta Phys. Sin. 55 6543 (in Chinese) [夏明许, 孟庆格, 张曙光, 马朝利, 李建国 2006 物理学报 55 6543]

    [5]

    Han G, Qiang J B, Wang Q, Wang Y M, Xia J H, Zhu C L, Quan S G, Dong C 2012 Acta Phys. Sin. 61 036402 (in Chinese) [韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯 2012 物理学报 61 036402]

    [6]

    Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 56 1543 (in Chinese) [王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒 2006 物理学报 56 1543]

    [7]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949

    [8]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [9]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [10]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [11]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [12]

    Yang L, Bian X F, Pan S P, Qin J Y 2012 Acta Phys. Sin. 61 036101 (in Chinese) [杨磊, 边秀房, 潘少鹏, 秦敬玉 2012 物理学报 61 036101]

    [13]

    Wang L, Zhang Y N, Mao X M, Peng C X 2007 Chin. Phys. Lett. 24 2319

    [14]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [15]

    Ding J, Cheng Y Q, Sheng H W, Ma E 2012 Phys. Rev. B 85 060201

    [16]

    Liu X J, Xu Y, Lu Z P, Hui X, Chen G L, Zheng G P, Liu C T 2011 Acta Mater. 59 6480

    [17]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [18]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [19]

    Jing Q, Xu Y, Zhang X Y, Li G, Li L X, Xu Z, Ma M Z, Liu R P 2009 Chin. Phys. Lett. 26 086109

    [20]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philos. Mag. 89 109

    [21]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [22]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [23]

    Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 104509

    [24]

    Tian H, Zhang C, Wang L, Zhao J J, Dong C, Wen B, Wang Q 2011 J. Appl. Phys. 109 123520

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [27]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [28]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [29]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [30]

    Pan S P, Qin J Y, Wang W M, Gu T K 2012 J. Non-Cryst. Solids 358 1873

    [31]

    Doye J P K, Wales D J 2003 J. Chem. Phys. 118 2792

    [32]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 J. Phys. Chem. A 112 12326

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Park E S, Kim D H, Kim W T 2005 Appl. Phys. Lett. 86 061907

    [4]

    Xia M X, Meng Q G, Zhang S G, Ma C L, Li J G 2006 Acta Phys. Sin. 55 6543 (in Chinese) [夏明许, 孟庆格, 张曙光, 马朝利, 李建国 2006 物理学报 55 6543]

    [5]

    Han G, Qiang J B, Wang Q, Wang Y M, Xia J H, Zhu C L, Quan S G, Dong C 2012 Acta Phys. Sin. 61 036402 (in Chinese) [韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯 2012 物理学报 61 036402]

    [6]

    Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 56 1543 (in Chinese) [王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒 2006 物理学报 56 1543]

    [7]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949

    [8]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [9]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [10]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [11]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [12]

    Yang L, Bian X F, Pan S P, Qin J Y 2012 Acta Phys. Sin. 61 036101 (in Chinese) [杨磊, 边秀房, 潘少鹏, 秦敬玉 2012 物理学报 61 036101]

    [13]

    Wang L, Zhang Y N, Mao X M, Peng C X 2007 Chin. Phys. Lett. 24 2319

    [14]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [15]

    Ding J, Cheng Y Q, Sheng H W, Ma E 2012 Phys. Rev. B 85 060201

    [16]

    Liu X J, Xu Y, Lu Z P, Hui X, Chen G L, Zheng G P, Liu C T 2011 Acta Mater. 59 6480

    [17]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [18]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [19]

    Jing Q, Xu Y, Zhang X Y, Li G, Li L X, Xu Z, Ma M Z, Liu R P 2009 Chin. Phys. Lett. 26 086109

    [20]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philos. Mag. 89 109

    [21]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [22]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [23]

    Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 104509

    [24]

    Tian H, Zhang C, Wang L, Zhao J J, Dong C, Wen B, Wang Q 2011 J. Appl. Phys. 109 123520

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [27]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [28]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [29]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [30]

    Pan S P, Qin J Y, Wang W M, Gu T K 2012 J. Non-Cryst. Solids 358 1873

    [31]

    Doye J P K, Wales D J 2003 J. Chem. Phys. 118 2792

    [32]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 J. Phys. Chem. A 112 12326

  • [1] Yin Yu-Ming, Zhao Ling-Ling. Effects of salt concentrations and pore surface structure on the water flow through rock nanopores. Acta Physica Sinica, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [2] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [4] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoreticalstudy on thermodynamicproperties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [5] High-speed and large-scale light-sheet microscopy with electrically tunable lens. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191908
    [6] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [7] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [8] Yang Yong-Xia, Li Yu-Ye, Gu Hua-Guang. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex. Acta Physica Sinica, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [9] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [10] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [11] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [12] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [13] Anisotropic Dissipation in a Dipolar Bose-Einstein Condensate. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200025
    [14] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lü Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [15] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [16] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [17] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  516
  • PDF Downloads:  509
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2013
  • Accepted Date:  30 June 2013
  • Published Online:  05 October 2013

A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy

  • 1. School of Material Science & Engineering, Hunan University Changsha 410082, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51071065), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100161110001).

Abstract: The rapid solidification process of liquid Cu64Zr36 alloy is simulated using a molecular dynamics method. The evolution in micro-structures are analyzed by means of pair distribution functions (PDF), Honeycutt-Andersen (H-A) bond-type index method and cluster-type index method (CTIM). It is found that both of liquid and rapidly solidified solid mostly consist of (12 0 12 0) icosahedra and their distorted (12 8/1551 2/1541 2/1431) configurations at a cooling rate of 50 K/ns, most of which are Cu-centered Cu8Zr5 clusters, followed by Cu7Zr6 and then Cu9Zr4 clusters. Size distribution of icosahedral medium-range order (IMRO) clusters linked by intercross-sharing (IS) atoms in the liquid and the glassy solid presents the magic number sequences of 13, 19, 25,···and 13, 19, 23, 25, 29, 37···, respectively. The track of atoms reveals no icosahedral clusters in rapidly solidified solid that can be detected in the liquid alloy. Onset temperature of configuration heredity emerges in the supercooled liquid region of Tm–Tg. A direct and perfect heredity of icosahedra is found to be dominant and a distinct ascent in heredity fraction takes place at Tg. Compared with (12 8/1551 2/1541 2/1431) distorted icosahedra, (12 0 12 0) standard icosahedra are of high structural stability and configurational genetic ability below Tg, whereas only a few can keep their chemical composition unchanged. By partial heredity, even some IMRO clusters in super-cooled liquid can be transmitted to glassy alloy.

Reference (32)

Catalog

    /

    返回文章
    返回