Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact of (Al, Ga, In) and 2N preferred orientation heavy co-doping on conducting property of ZnO

Hou Qing-Yu Liu Quan-Long Zhao Chun-Wang Zhao Er-Jun

Impact of (Al, Ga, In) and 2N preferred orientation heavy co-doping on conducting property of ZnO

Hou Qing-Yu, Liu Quan-Long, Zhao Chun-Wang, Zhao Er-Jun
PDF
Get Citation
  • At present, although there is some studies about the theoretical calculation studies of Zn1-xTMxO1-yNy(TM=Al, Ga, In) p-type doped have been reported. But, they are random doping and without considering the asymmetry of ZnO preferred orientation to doping. Therefore, Six different supercell models Zn1-xTMxO1-yNy (TM = Al, Ga, In. x = 0.0625, y = 0.125) which proportion is TM:N = 1:2 and preferred orientation to co-doped have been constructed based on the first-principles plane wave ultra-soft pseudo potential method of density function theory, in this study.Then calculate the geometric optimization, State density distribution and Band structure distribution for all models, respectively. Results indicate that with the condition of heavily doped and preferred orientation to co-doped, in the same kind of preferred orientation co-doping systems, the electrical conductivity of the system which TM-N bond along the c-axis direction is greater than it perpendicular to the c-axis. In the different kinds co-doping ZnO systems which TM-N bond along the c-axis direction, The co-doping systems of In-N bond along the c-axis direction has the strongest conductivity and the lowest ionization energy and the largest Bohr radius. It is more favorable for electrical conductivity of p-type ZnO. This study can be a theoretical guidance for improve the electrical conductivity of which design and preparation TM:N=1:2 ratio preferred orientation co-doping ZnO systems.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the Ministry of Education Spring Sunshine Plan Funding, and the CollegeScience Research Projectof Inner Mongolia Autonomous Region (Grant No. NJZZ13099).
    [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [3]

    Zhang C Y, Li X M, Bian J M, Yu W D, Gao X D 2004 Solid State Commun 132 75

    [4]

    Lu J G, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Zhu L P 2004 Appl. Phys. Lett. 85 3134

    [5]

    Xu Y, Wang J, Dou Y B 2010 J. Maters. Eng. (11) 11 (in Chinese) [许莹, 王娟, 窦玉博 2010 材料工程 (11) 11]

    [6]

    Lv J G, Ye Z Z, Zhu G F, Zeng Y J, Zhao B H, Zhu L P 2005 Journal of Semiconductors 26 730 (in Chinese)[吕建国, 叶志镇, 诸葛飞, 曾昱嘉, 赵炳辉, 朱丽萍 2005 半导体学报 26 730]

    [7]

    Ye Z Z, Qian Q, Yuan G D, Zhao B H, Ma D W 2005 J. Cryst. Growth 274 178

    [8]

    Joseph M, Tabata H, Kawai T 1999 Jpn. App. Phys. 38 L 1205

    [9]

    Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349

    [10]

    Kumar M, Kim T H, Kim S S, Lee B T 2006 App. Phys. Lett. 89 112103

    [11]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118

    [12]

    Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256

    [13]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106

    [14]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci 253 4990

    [15]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [16]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 25 256401

    [17]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [18]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [19]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [20]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [21]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics(Xi an: Xi an Jiao tong University Press)p77-79 (in Chinese)[刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第77–79页]

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [23]

    Ye Z Z, Lv J G, Zhang Y Z, He H P 2009 Zinc oxide doped semiconductor material technology and application (Zhejiang: Zhejiang University Press) p6 (in Chinese) [叶志镇, 吕建国, 张银珠, 何海平 2009 氧化锌半导体材料掺杂技术与应用(浙江: 浙江大学出版社)第6页]

    [24]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828

    [25]

    Schleife A, Fuchs F, Furthm ller J 2006 J. phys Rev. B 73 245212

    [26]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [27]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

    [28]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932

    [29]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

  • [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [3]

    Zhang C Y, Li X M, Bian J M, Yu W D, Gao X D 2004 Solid State Commun 132 75

    [4]

    Lu J G, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Zhu L P 2004 Appl. Phys. Lett. 85 3134

    [5]

    Xu Y, Wang J, Dou Y B 2010 J. Maters. Eng. (11) 11 (in Chinese) [许莹, 王娟, 窦玉博 2010 材料工程 (11) 11]

    [6]

    Lv J G, Ye Z Z, Zhu G F, Zeng Y J, Zhao B H, Zhu L P 2005 Journal of Semiconductors 26 730 (in Chinese)[吕建国, 叶志镇, 诸葛飞, 曾昱嘉, 赵炳辉, 朱丽萍 2005 半导体学报 26 730]

    [7]

    Ye Z Z, Qian Q, Yuan G D, Zhao B H, Ma D W 2005 J. Cryst. Growth 274 178

    [8]

    Joseph M, Tabata H, Kawai T 1999 Jpn. App. Phys. 38 L 1205

    [9]

    Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349

    [10]

    Kumar M, Kim T H, Kim S S, Lee B T 2006 App. Phys. Lett. 89 112103

    [11]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118

    [12]

    Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256

    [13]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106

    [14]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci 253 4990

    [15]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [16]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 25 256401

    [17]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [18]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [19]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [20]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [21]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics(Xi an: Xi an Jiao tong University Press)p77-79 (in Chinese)[刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第77–79页]

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [23]

    Ye Z Z, Lv J G, Zhang Y Z, He H P 2009 Zinc oxide doped semiconductor material technology and application (Zhejiang: Zhejiang University Press) p6 (in Chinese) [叶志镇, 吕建国, 张银珠, 何海平 2009 氧化锌半导体材料掺杂技术与应用(浙江: 浙江大学出版社)第6页]

    [24]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828

    [25]

    Schleife A, Fuchs F, Furthm ller J 2006 J. phys Rev. B 73 245212

    [26]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [27]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

    [28]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932

    [29]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

  • [1] Hou Qing-Yu, Wu Yun, Zhao Chun-Wang. Study on the effect of In-2N co-doping at preferential locality on the photoelectric function of ZnO (GGA+U). Acta Physica Sinica, 2014, 63(13): 137201. doi: 10.7498/aps.63.137201
    [2] Hou Qing-Yu, Wu Yun, Zhao Chun-Wang. Effect of concentration of heavy oxygen vacancy in rutile and anatase (TiO2) on electric conductivity performance studied by simulation and calculation. Acta Physica Sinica, 2013, 62(23): 237101. doi: 10.7498/aps.62.237101
    [3] Hou Qing-Yu, Dong Hong-Ying, Ma Wen, Zhao Chun-Wang. Simulation and calculation of conducting property of Zn1-xTMxO (TM=Al, Ga, In). Acta Physica Sinica, 2013, 62(15): 157102. doi: 10.7498/aps.62.157102
    [4] Hou Qing-Yu, Qu Ling-Feng, Zhao Chun-Wang. Effects of Al-2N doping on the photoelectric properties of ZnO. Acta Physica Sinica, 2016, 65(5): 057401. doi: 10.7498/aps.65.057401
    [5] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [6] Hou Qing-Yu, Ma Wen, Ying Chun. First principles study of effects of the concentration of Ga/N highly doped p-type ZnO on electric conductivity performance and red shift. Acta Physica Sinica, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [7] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun. First-principles study on the effects of the concentration of Al-2N high codoping on the electric conducting performance of ZnO. Acta Physica Sinica, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [8] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [9] Yang Yin-Tang, Wu Jun, Ding Rui-Xue, Song Jiu-Xu, Shi Li-Chun, Cai Yu-Rong. First principles investigation on conductivity mechanism of p-type K:ZnO. Acta Physica Sinica, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [10] Peng Li-Ping, Yin Jian-Wu, Xu Ling. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
  • Citation:
Metrics
  • Abstract views:  420
  • PDF Downloads:  474
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2013
  • Accepted Date:  30 November 2013
  • Published Online:  05 March 2014

Impact of (Al, Ga, In) and 2N preferred orientation heavy co-doping on conducting property of ZnO

  • 1. College of Sciences, Inner Mongolia University of Technology, Hohhot 010051
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the Ministry of Education Spring Sunshine Plan Funding, and the CollegeScience Research Projectof Inner Mongolia Autonomous Region (Grant No. NJZZ13099).

Abstract: At present, although there is some studies about the theoretical calculation studies of Zn1-xTMxO1-yNy(TM=Al, Ga, In) p-type doped have been reported. But, they are random doping and without considering the asymmetry of ZnO preferred orientation to doping. Therefore, Six different supercell models Zn1-xTMxO1-yNy (TM = Al, Ga, In. x = 0.0625, y = 0.125) which proportion is TM:N = 1:2 and preferred orientation to co-doped have been constructed based on the first-principles plane wave ultra-soft pseudo potential method of density function theory, in this study.Then calculate the geometric optimization, State density distribution and Band structure distribution for all models, respectively. Results indicate that with the condition of heavily doped and preferred orientation to co-doped, in the same kind of preferred orientation co-doping systems, the electrical conductivity of the system which TM-N bond along the c-axis direction is greater than it perpendicular to the c-axis. In the different kinds co-doping ZnO systems which TM-N bond along the c-axis direction, The co-doping systems of In-N bond along the c-axis direction has the strongest conductivity and the lowest ionization energy and the largest Bohr radius. It is more favorable for electrical conductivity of p-type ZnO. This study can be a theoretical guidance for improve the electrical conductivity of which design and preparation TM:N=1:2 ratio preferred orientation co-doping ZnO systems.

Reference (29)

Catalog

    /

    返回文章
    返回