Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact of (Al, Ga, In) and 2N preferred orientation heavy co-doping on conducting property of ZnO

Hou Qing-Yu Liu Quan-Long Zhao Chun-Wang Zhao Er-Jun

Impact of (Al, Ga, In) and 2N preferred orientation heavy co-doping on conducting property of ZnO

Hou Qing-Yu, Liu Quan-Long, Zhao Chun-Wang, Zhao Er-Jun
PDF
Get Citation
Metrics
  • Abstract views:  349
  • PDF Downloads:  474
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2013
  • Accepted Date:  30 November 2013
  • Published Online:  05 March 2014

Impact of (Al, Ga, In) and 2N preferred orientation heavy co-doping on conducting property of ZnO

  • 1. College of Sciences, Inner Mongolia University of Technology, Hohhot 010051
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the Ministry of Education Spring Sunshine Plan Funding, and the CollegeScience Research Projectof Inner Mongolia Autonomous Region (Grant No. NJZZ13099).

Abstract: At present, although there is some studies about the theoretical calculation studies of Zn1-xTMxO1-yNy(TM=Al, Ga, In) p-type doped have been reported. But, they are random doping and without considering the asymmetry of ZnO preferred orientation to doping. Therefore, Six different supercell models Zn1-xTMxO1-yNy (TM = Al, Ga, In. x = 0.0625, y = 0.125) which proportion is TM:N = 1:2 and preferred orientation to co-doped have been constructed based on the first-principles plane wave ultra-soft pseudo potential method of density function theory, in this study.Then calculate the geometric optimization, State density distribution and Band structure distribution for all models, respectively. Results indicate that with the condition of heavily doped and preferred orientation to co-doped, in the same kind of preferred orientation co-doping systems, the electrical conductivity of the system which TM-N bond along the c-axis direction is greater than it perpendicular to the c-axis. In the different kinds co-doping ZnO systems which TM-N bond along the c-axis direction, The co-doping systems of In-N bond along the c-axis direction has the strongest conductivity and the lowest ionization energy and the largest Bohr radius. It is more favorable for electrical conductivity of p-type ZnO. This study can be a theoretical guidance for improve the electrical conductivity of which design and preparation TM:N=1:2 ratio preferred orientation co-doping ZnO systems.

Reference (29)

Catalog

    /

    返回文章
    返回