搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-2N高共掺位向对ZnO(GGA+U)导电性能影响的研究

侯清玉 乌云 赵春旺

引用本文:
Citation:

In-2N高共掺位向对ZnO(GGA+U)导电性能影响的研究

侯清玉, 乌云, 赵春旺

Study on the effect of In-2N co-doping at preferential locality on the photoelectric function of ZnO (GGA+U)

Hou Qing-Yu, Wu Yun, Zhao Chun-Wang
PDF
导出引用
  • 目前,虽然In和2N共掺对ZnO导电性能影响的实验研究均有报道,但是,In和2N共掺在ZnO中均是随机掺杂,没有考虑利用ZnO的单极性结构进行择优位向共掺. 第一性原理的出现能够解决该问题. 因此,本文采用密度泛函理论框架下的第一性原理平面波超软赝势方法,计算了未掺杂ZnO单胞、不同位向高共掺In-2N原子的Zn1-xInxO1-yNy(x= 0.0625,y=0.125)两种超胞模型的能带结构分布、态密度分布和吸收光谱分布. 计算结果表明,高共掺In-N原子沿c轴取向成键的条件下,掺杂浓度越低,体系更稳定、带隙越窄、有效质量越小、迁移率越增加、相对自由空穴浓度越增加、电导率越增加、导电性能越理想. 计算结果与实验结果相一致. 这对设计和制备导电功能材料有一定的理论指导作用.
    Nowadays although the study of In-N co-doping effect on the photoelectric function of ZnO is relatively common, all of the In-N co-doped ZnO are of random doping, and the preferential locality doping using the unpolarized structure of ZnO has not been considered so far. Therefore, in this paper, based on the density functional theory using first-principles plane-wave ultrasoft pseudopotential method, the un-doped and the In-N heavily co-doped Zn1-xInxO1-yNy (x= 0.0625, y=0.125) in different orientations have been set up, and band structures and density of states have been calculated respectively. The calculated results show that the In-N atoms along the c-axis orientation has the advantages of high stability over those in the vertical c-axis direction, the band gap is narrower, the effective mass is smaller, the mobility is greater, and the hole concentration is higher, so that the conductivity of ZnO is higher in the In-N heavily co-doped materials. We believe that these results may be helpful to the design and preparation of the conductivity of In-N heavily co-doped ZnO.
    • 基金项目: 国家自然科学基金(批准号:61366008,51261017)、教育部“春晖计划”资助项目和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the Ministry of Education "Spring Sunshine" Plan Funding, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J Phys. Chem. B 109 2526

    [2]

    Badeker K 1907 Ann. Phys. (LeiPzig) 22 749

    [3]

    GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 SuPerlattice Microst 39 107

    [4]

    Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sei. Eng. B 90 50

    [5]

    Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44

    [6]

    Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256

    [7]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106

    [8]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 App. Surf. Sci. 253 4990

    [9]

    Chen L L, Ye Z Z, Lu J G, Chu P K 2006 App. Phys. Lett. 89 252113

    [10]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118

    [11]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 物理学报 57 3138]

    [12]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [13]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

    [14]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [15]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [16]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [17]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118

    [18]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 物理学报 57 5828]

    [19]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [20]

    Zhang J K, Deng S H, Jin H, Liu R L 2007 Acta Phys. Sin. 56 5371 (in Chinese)[张金奎, 邓胜华, 金慧, 刘悦林. 2007 物理学报 56 5371]

    [21]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [22]

    Zhou C, Kang J 2004 13thProceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

  • [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J Phys. Chem. B 109 2526

    [2]

    Badeker K 1907 Ann. Phys. (LeiPzig) 22 749

    [3]

    GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 SuPerlattice Microst 39 107

    [4]

    Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sei. Eng. B 90 50

    [5]

    Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44

    [6]

    Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256

    [7]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106

    [8]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 App. Surf. Sci. 253 4990

    [9]

    Chen L L, Ye Z Z, Lu J G, Chu P K 2006 App. Phys. Lett. 89 252113

    [10]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118

    [11]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 物理学报 57 3138]

    [12]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [13]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

    [14]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [15]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [16]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [17]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118

    [18]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 (in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 物理学报 57 5828]

    [19]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [20]

    Zhang J K, Deng S H, Jin H, Liu R L 2007 Acta Phys. Sin. 56 5371 (in Chinese)[张金奎, 邓胜华, 金慧, 刘悦林. 2007 物理学报 56 5371]

    [21]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [22]

    Zhou C, Kang J 2004 13thProceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [4] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究. 物理学报, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [5] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [6] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [7] 侯清玉, 曲灵丰, 赵春旺. Al-2N掺杂量对ZnO光电性能的影响. 物理学报, 2016, 65(5): 057401. doi: 10.7498/aps.65.057401
    [8] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [9] 王永贞, 徐朝鹏, 张文秀, 张欣, 王倩, 张磊. Ge掺杂对InI导电性能影响的第一性原理研究. 物理学报, 2014, 63(23): 237101. doi: 10.7498/aps.63.237101
    [10] 侯清玉, 刘全龙, 赵春旺, 赵二俊. (Al, Ga, In)和2N择优位向重共掺对ZnO导电性能影响的研究. 物理学报, 2014, 63(5): 057101. doi: 10.7498/aps.63.057101
    [11] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [12] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [13] 侯清玉, 董红英, 马文, 赵春旺. Zn1-xTMxO (TM=Al, Ga, In)导电性能的模拟计算. 物理学报, 2013, 62(15): 157102. doi: 10.7498/aps.62.157102
    [14] 侯清玉, 乌云, 赵春旺. 重氧空位对金红石型和锐钛矿型TiO2导电性能影响的模拟计算. 物理学报, 2013, 62(23): 237101. doi: 10.7498/aps.62.237101
    [15] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [16] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [17] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [18] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [19] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  4458
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-11
  • 修回日期:  2014-03-24
  • 刊出日期:  2014-07-05

/

返回文章
返回