Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of annealing on green luminescence from Cu:ZnO thin films

Jia Xiang-Hua Zheng You-Jin Yin Long-Cheng Huang Hai-Liang Jiang Hong-Wei Zhu Rui-Hua

Influence of annealing on green luminescence from Cu:ZnO thin films

Jia Xiang-Hua, Zheng You-Jin, Yin Long-Cheng, Huang Hai-Liang, Jiang Hong-Wei, Zhu Rui-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • ZnO thin films are prepared by sol-gel method on Si substrates. The structural and optical properties of the films annealed at different temperatures are analyzed by X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy and photoluminescence. The results of XRD show that each of all the ZnO thin films has a wurtzite phase and is preferentially oriented along the c-axis direction. The sample annealed at 900℃ exhibits a better crystalline quality. Bright and stable structured green luminescence is achieved from the Cu-doped ZnO thin film. The intensity of the green emission increases significantly after annealing at 800℃, while starts to decrease with further increasing temperature. Green luminescence is correlated with the creation of Zn vacancies. Green emission peaks are found to be dependent on the relative concentration of defect centers. The substitution of Cu2+ by Cu+ will increase concentration of defects in the Cu:ZnO thin film and result in very strong green emission.
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201341), the Key Science and Technology Program of Mudanjiang, China (Grant Nos. G2013e1233, G2014f1578), and the Scientific Research Foundation of the Education Bureau of Heilongjiang Province, China (Grant No. 12521577).
    [1]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [2]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [3]

    Lin C A, Tsai D S, Chen C Y, He J H 2011 Nanoscale 3 1195

    [4]

    Dev A, Niepelt R, Richters J P, Ronning C, Voss T 2010 Nanotechnology 21 065709

    [5]

    Huang X H, Tay C B, Zhan Z Y, Zhang C, Zheng L X, Venkatesan T, Chua S J 2011 Cryst. Eng. Commun. 13 7032

    [6]

    Tay Y Y, Tan T T, Boey F, Liang M H, Ye J, Zhao Y, Norby T, Li S 2010 Phys. Chem. Chem. Phys. 12 2373

    [7]

    Xu L H, Zheng G G, Lai M, Pei S X 2014 J. Alloys Compd. 583 560

    [8]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J, Lee T I, Myoung J M 2010 Appl. Phys. Lett. 97 022103

    [9]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 物理学报 56 3479]

    [10]

    Wang D D, Xing G Z, Gao M, Yang L L, Yang J H, Wu T 2011 J. Phys. Chem. C 115 22729

    [11]

    Liu Y D, Liang H W, Xu L, Zhao J Z, Bian J M, Luo Y, Liu Y, Li W C, Wu G G, Du G T 2010 J. Appl. Phys. 108 113507

    [12]

    Li F M, Bo L T, Ma S Y, Huang X L, Ma L G, LiuJ, Zhang X L, Yang F C, Zhao Q 2012 Superlattices Microstruct. 51 332

    [13]

    Serhane R, Messaci S A, Lafane S, Khales H, Aouimeur W, Bey A H, Boutkedjirt T 2014 Appl. Sur. Sci. 288 572

    [14]

    Liu A, Liu G X, Shan F K, Zhu H H, Shin B C, Lee W J, Cho C R 2013 Chin. Phys. Lett. 30 127301

    [15]

    Jiang J, Zhu L P, Wu Y Z, Zeng Y J, He H P, Lin J M, Ye Z Z 2012 Mater. Lett. 68 258

    [16]

    Lina M C, Wua M K, Chen M J, Yanga J R, Shiojirid M 2012 Mater. Chem. Phys. 135 88

    [17]

    Cui X Z, Zhang T C, Mei Z X, Liu Z L, Liu Y P, Guo Y, Xue Q K, Du X L 2008 J. Crys. Growth 310 5428

    [18]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [19]

    Li F M, Zhu C T, Man S Y, Sun A M, Song H S, Li X B, Wang X 2013 Mater. Sci. Semicon. Process. 16 1079

    [20]

    Ma L G, Ma S Y, Chen H X, Ai X Q, Huang X L 2011 Appl. Sur. Sci. 257 10036

    [21]

    Peng X, Xu J, Zang H, Wang B, Wang Z 2008 J. Lumin. 128 297

    [22]

    Kulyk B, Sahraoui B, Figà V, Turko B, Rudyk V, Kapustianyk V 2009 J. Alloys. Compd. 481 819

    [23]

    Zhu M W, Xia J H, Hong R J, Abu-Samra H, Huang H, Staedler T, Gong J, Sun C, Jiang X 2008 J. Cryst. Growth 310 816

    [24]

    Kishida S, Tokutaka H, Nakanishi S, Watanabe Y, Fujimoto H, Nishimori K, Ishihara N, Futo W, Torigoe S, Harada H 1989 Jpn. J. Appl. Phys. 28 951

    [25]

    Huang X H, Zhang C, Tay C B, Venkatesan T, Chua S J 2013 Appl. Phys. Lett. 102 111106

    [26]

    Janotti A, van de Walle C G 2009 Rep. Prog. Phys. 72 126501

    [27]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 物理学报 61 167105]

    [28]

    Xu J P, Liu P, Shi S B, Zhang X S, Wang L S, Ren Z R, Ge L, Li L 2012 Appl. Surf. Sci. 258 7118

  • [1]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [2]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [3]

    Lin C A, Tsai D S, Chen C Y, He J H 2011 Nanoscale 3 1195

    [4]

    Dev A, Niepelt R, Richters J P, Ronning C, Voss T 2010 Nanotechnology 21 065709

    [5]

    Huang X H, Tay C B, Zhan Z Y, Zhang C, Zheng L X, Venkatesan T, Chua S J 2011 Cryst. Eng. Commun. 13 7032

    [6]

    Tay Y Y, Tan T T, Boey F, Liang M H, Ye J, Zhao Y, Norby T, Li S 2010 Phys. Chem. Chem. Phys. 12 2373

    [7]

    Xu L H, Zheng G G, Lai M, Pei S X 2014 J. Alloys Compd. 583 560

    [8]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J, Lee T I, Myoung J M 2010 Appl. Phys. Lett. 97 022103

    [9]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 物理学报 56 3479]

    [10]

    Wang D D, Xing G Z, Gao M, Yang L L, Yang J H, Wu T 2011 J. Phys. Chem. C 115 22729

    [11]

    Liu Y D, Liang H W, Xu L, Zhao J Z, Bian J M, Luo Y, Liu Y, Li W C, Wu G G, Du G T 2010 J. Appl. Phys. 108 113507

    [12]

    Li F M, Bo L T, Ma S Y, Huang X L, Ma L G, LiuJ, Zhang X L, Yang F C, Zhao Q 2012 Superlattices Microstruct. 51 332

    [13]

    Serhane R, Messaci S A, Lafane S, Khales H, Aouimeur W, Bey A H, Boutkedjirt T 2014 Appl. Sur. Sci. 288 572

    [14]

    Liu A, Liu G X, Shan F K, Zhu H H, Shin B C, Lee W J, Cho C R 2013 Chin. Phys. Lett. 30 127301

    [15]

    Jiang J, Zhu L P, Wu Y Z, Zeng Y J, He H P, Lin J M, Ye Z Z 2012 Mater. Lett. 68 258

    [16]

    Lina M C, Wua M K, Chen M J, Yanga J R, Shiojirid M 2012 Mater. Chem. Phys. 135 88

    [17]

    Cui X Z, Zhang T C, Mei Z X, Liu Z L, Liu Y P, Guo Y, Xue Q K, Du X L 2008 J. Crys. Growth 310 5428

    [18]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [19]

    Li F M, Zhu C T, Man S Y, Sun A M, Song H S, Li X B, Wang X 2013 Mater. Sci. Semicon. Process. 16 1079

    [20]

    Ma L G, Ma S Y, Chen H X, Ai X Q, Huang X L 2011 Appl. Sur. Sci. 257 10036

    [21]

    Peng X, Xu J, Zang H, Wang B, Wang Z 2008 J. Lumin. 128 297

    [22]

    Kulyk B, Sahraoui B, Figà V, Turko B, Rudyk V, Kapustianyk V 2009 J. Alloys. Compd. 481 819

    [23]

    Zhu M W, Xia J H, Hong R J, Abu-Samra H, Huang H, Staedler T, Gong J, Sun C, Jiang X 2008 J. Cryst. Growth 310 816

    [24]

    Kishida S, Tokutaka H, Nakanishi S, Watanabe Y, Fujimoto H, Nishimori K, Ishihara N, Futo W, Torigoe S, Harada H 1989 Jpn. J. Appl. Phys. 28 951

    [25]

    Huang X H, Zhang C, Tay C B, Venkatesan T, Chua S J 2013 Appl. Phys. Lett. 102 111106

    [26]

    Janotti A, van de Walle C G 2009 Rep. Prog. Phys. 72 126501

    [27]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 物理学报 61 167105]

    [28]

    Xu J P, Liu P, Shi S B, Zhang X S, Wang L S, Ren Z R, Ge L, Li L 2012 Appl. Surf. Sci. 258 7118

  • [1] Wang De-Yi, Gao Shu-Xia, Li Gang, Zhao Ming. The structure,optical and electrical properties of Li-N dual-acceptor doped p-type ZnO thin films prepared by sol-gel method. Acta Physica Sinica, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [2] Li Shi-Shuai, Zhang Zhong, Huang Jin-Zhao, Feng Xiu-Peng, Liu Ru-Xi. Preparation and mechanism of In-doped ZnO emitting white-light. Acta Physica Sinica, 2011, 60(9): 097405. doi: 10.7498/aps.60.097405
    [3] Wu Ding-Cai, Hu Zhi-Gang, Duan Man-Yi, Xu Lu-Xiang, Liu Fang-Shu, Dong Cheng-Jun, Wu Yan-Nan, Ji Hong-Xuan, Xu Ming. Synthesis and photoluminescence of (Co, Cu)-doped ZnO thin films. Acta Physica Sinica, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [4] Wu Yan-Nan, Xu Ming, Wu Ding-Cai, Dong Cheng-Jun, Zhang Pei-Pei, Ji Hong-Xuan, He Lin. Effects of Co and/or Sn doping on crystal structures and optical properties of ZnO thin films. Acta Physica Sinica, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [5] Guo Zhao-Long, Zhao Hai-Xin, Zhao Wei. Preparation and characterization of self-cleaning and anti-reflection ZnO-SiO2 nanometric films. Acta Physica Sinica, 2016, 65(6): 064206. doi: 10.7498/aps.65.064206
    [6] Liang Li-Ping, Zhang Lei, Xu Yao, Zhang Bin, Wu Dong, Sun Yu-Han, Jiang Xiao-Dong, Wei Xiao-Feng, Li Zhi-Hong, Wu Zhong-Hua. Sol-gel deposition of highly reflective multilayer coatings from PVP-ZrO2 hybrid systems. Acta Physica Sinica, 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
    [7] Wang Xiao-Dong, Shen Jun, Wang Sheng-Zhao, Zhang Zhi-Hua. Optical constants of sol-gel derived TiO2 films characterized by spectroscopic ellipsometry. Acta Physica Sinica, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [8] Zhao Ming-Lei, Wang Chun-Lei, Zhong Wei-Lie, Wang Jin-Feng, Chen Hong-Cun. Electrical properties of (Bi05Na05)TiO3 ceramic prepared by sol-gel method. Acta Physica Sinica, 2003, 52(1): 229-232. doi: 10.7498/aps.52.229
    [9] He Zhi-Wei, Zhen Cong-Mian, Lan Wei, Wang Yin-Yue. Deposition of nanoporous silica thin films by sol-gel. Acta Physica Sinica, 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [10] Liang Li-Ping, Zhang Lei, Sheng Yong-Gang, Xu Yao, Wu Dong, Sun Yu-Han, Jiang Xiao-Dong, Wei Xiao-Feng. Studies on the laser-induced damage resistance of sol-gel derived ZrO2-TiO2 composite high refractive index films. Acta Physica Sinica, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [11] Liang Li-Ping, Xu Yao, Zhang Lei, Wu Dong, Sun Yu-Han, Li Zhi-Hong, Wu Zhong-Hua. Sol-gel processing of ZrO2 and polymer doped-ZrO2 monolayer reflective films with high laser damage threshold. Acta Physica Sinica, 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [12] Zhao Ming-Lei, Wang Chun-Lei, Wang Jin-Feng, Chen Hong-Cun, Zhong Wei-Lie. Enhanced piezoelectric properties of (Bi0.5Na0.5)1-xBax TiO3 lead-free ceramics by sol-gel method. Acta Physica Sinica, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [13] Liu Yi, Zhang Qing, Li Hai-Jin, Li Yong, Liu Hou-Tong. Temperature dependence of electrical resistivity for Sr-doped perovskite-type oxide Y1-xSrxCoO3 prepared by sol-gel process. Acta Physica Sinica, 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [14] Tao Wei-Dong, Dong Jian-Feng, Xia Hai-Ping, Bai Gui-Ru, Lu Zu-Kang. Study on fabrication of sol-gel glass containing chiral micro-crystal and its depolarization. Acta Physica Sinica, 2004, 53(3): 891-894. doi: 10.7498/aps.53.891
    [15] Yang Chang-Hu, Ma Zhong-Quan, Xu Fei, Zhao Lei, Li Feng, He Bo. Raman spectral analysis of TiO2 thin films doped with rare-earth yttrium and lanthanum. Acta Physica Sinica, 2010, 59(9): 6549-6555. doi: 10.7498/aps.59.6549
    [16] Zhuang Xiao-Bo, Xia Hai-Ping. Nonlinear absorption properties of Cu(II)meso-tetra(4-sulfonatopheny1) porphine in TiO2/SiO2 organic-inorganic gel using Z-scan technique. Acta Physica Sinica, 2012, 61(18): 184213. doi: 10.7498/aps.61.184213
    [17] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
    [18] Lan Wei, Liu Xue-Qin, Huang Chun-Ming, Tang Guo-Mei, Yang Yang, Wang Yin-Yue. Structural properties of ZnO: In thin films prepared by sol-gel spin-coating technique. Acta Physica Sinica, 2006, 55(2): 748-752. doi: 10.7498/aps.55.748
    [19] Yang He-Qing, Wang Xuan, zhang Bang-Lao, Li Yong-Fang, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(1): 178-182. doi: 10.7498/aps.51.178
    [20] Zang Jing-Cun, Tian Zhan-Kui, Liu Yan-Hang, Chi Jing, Zou Yu-Lin, Wei Jian-Zhong, Ye Jian-Ping. Nucleation-growth and spinodal decomposition of zinc oxide films prepared by sol-gel technique. Acta Physica Sinica, 2006, 55(3): 1358-1362. doi: 10.7498/aps.55.1358
  • Citation:
Metrics
  • Abstract views:  936
  • PDF Downloads:  991
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2014
  • Accepted Date:  06 May 2014
  • Published Online:  05 August 2014

Influence of annealing on green luminescence from Cu:ZnO thin films

  • 1. Key Laboratory of Superhard Materials, Mudanjiang Normal College, Mudanjiang 157012, China
Fund Project:  Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201341), the Key Science and Technology Program of Mudanjiang, China (Grant Nos. G2013e1233, G2014f1578), and the Scientific Research Foundation of the Education Bureau of Heilongjiang Province, China (Grant No. 12521577).

Abstract: ZnO thin films are prepared by sol-gel method on Si substrates. The structural and optical properties of the films annealed at different temperatures are analyzed by X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy and photoluminescence. The results of XRD show that each of all the ZnO thin films has a wurtzite phase and is preferentially oriented along the c-axis direction. The sample annealed at 900℃ exhibits a better crystalline quality. Bright and stable structured green luminescence is achieved from the Cu-doped ZnO thin film. The intensity of the green emission increases significantly after annealing at 800℃, while starts to decrease with further increasing temperature. Green luminescence is correlated with the creation of Zn vacancies. Green emission peaks are found to be dependent on the relative concentration of defect centers. The substitution of Cu2+ by Cu+ will increase concentration of defects in the Cu:ZnO thin film and result in very strong green emission.

Reference (28)

Catalog

    /

    返回文章
    返回