x

## 留言板

Study of the shock wave induced by closing partial road in traffic flow

## Study of the shock wave induced by closing partial road in traffic flow

Sun Xiao-Yan, Zhu Jun-Fang
PDF

• #### Abstract

There often occurs traffic accident or road construction in real traffic, which leads to partial road closure. In this paper, we set up a traffic model for the partial road closure. According to the Nagel-Schreckenberg (NS) cellular automata update rules, the road can be separated into cells with the same length of 7.5 m. L = 4000 (corresponding to 30 km) is set to the road length in the simulations. For a larger system size, our simulations show that the results are the same with those presented in the following. In our model, vmax rtial road is closed (for convenience, we define the road length as L1), vmax 2= 2 (corresponding to 54 km/h) in the section of normal road (we define the road length as L2). In our simulations, let L1= L2 = 2000. We would like to mention that changing these parameter values does not have a qualitative influence on the simulation results. The simulation results demonstrate that three stationary phases exist, that is, low density (LD), high density (HD) and shock wave (SW). Two critical average densities are found:the critical point ρcr 1= 3/8 separates the LD phase from the SW phase, and ρcr 2= 1/2 separates the SW phase from the HD phase. We also analyze the relationship between the average flux J and average density ρ. In the LD phase J = 4/3ρ, in the HD phase J= 1 -ρ and J is 0.5 in the SW phase. We investigate the dependence of J on ρ. It is shown that with the increase of ρ, J first increases, at this stage J corresponds to the LD phase. Then J remains to be a constant 0.5 when the critical average density ρcr 1 is reached, and J corresponds to the SW phase (this time,J reaches the maximum value 0.5). One goal of traffic-management strategies is to maximize the flow. We find that the optimal choice of the average density is 3/8 ρρcr 2 is reached, J decreases with the increase of average density, which corresponds to the HD phase. We also obtain the relationship between the shock wave position and the average density by theoretical calculations, i.e. Si = i+4-8ρ, which is in agreement with simulations.

#### Authors and contacts

• Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 71461002, 11402058, 11202175), the Natural Science Foundation of Guangxi Province, China (Grant No. 2014GXNSFAA118012), and the project of outstanding young teachers’

#### References

 [1] Chowdhury D 2000 Phys. Rep. 329 199 [2] Gao H W, Gao Z Y, Xie D F 2011 Acta Phys. Sin. 60 058902 (in Chinese) [郭宏伟, 高自友, 谢东繁 2011 物理学报 60 058902] [3] He H D, Lu W Z, Dong L Y 2011 Chin. Phys. B 20 040514 [4] Lakouari N, Ez-Zahraouy H, Benyoussef A 2014 Phys. Lett. A 378 3169 [5] Nagatani T 2014 Physica A 413 352 [6] Tang T Q, Huang H J, Shang H Y 2010 Chin. Phys. B 19 050517 [7] Jia B, Jiang R, Wu Q S 2003 Int. J Mod. Phys. C 14 1295 [8] Zhang L, Du W 2012 J. Wuhan Univ. Tech. 36 886 (in Chinese) [张邻, 杜文 2012 武汉理工大学学报 36 886] [9] Zhang Ao M H, Gao Z Y 2012 J. Trans. Sys. Engin. Inf. Tech. 12 46 (in Chinese) [张敖木翰, 高自友 2012 交通运输系统工程与信息 12 46] [10] Qian Y S, Zeng J W, Du J W, Liu Y F, Wang M, Wei J 2011 Acta Phys. Sin. 60 060505 (in Chinese) [钱勇生, 曾俊伟, 杜加, 刘宇斐, 王敏, 魏军 2011 物理学报 60 060505] [11] Kanai M Phys. Rev. E 2005 72 035102(R) [12] Yamauchi A, Tanimoto J, Hagishima A, Sagara H 2009 Phys. Rev. E 79 036104 [13] Nakata M, Yamauchi A, Tanimoto J, Hagishima A 2010 , Physica A 389 5353 [14] Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing:Science Press) (in Chinese) [贾斌, 高自友, 李克平, 李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社)] [15] Li L, Jiang R, Jia B, Zhao X M 2011 T heory and Application of Modern Traffic flow(Vol. 1)-freeway traffic flow (Beijing:Tsinghua University Press) [李力, 姜锐, 贾斌, 赵小梅 2011 现代交通流理论与应用卷I-高速公路交通流 (北京:清华大学出版社)] [16] Sun D 2011 Ph. D. Dissertation (Hefei:University of Science and Technology of Chian) (in Chinese) [孙舵 2011 博士学位论文 (合肥:中国科学技术大学)] [17] Nagel K, Schreckenberg M 1992 J. Phys. I (France) 2 2221 [18] Sun X Y, Xie Y B, He Z W, Wang B H 2011 Phys. Lett. A 375 2699 [19] Derrida B, Evans M R, Hakim V 1993 J. Phys. A:Math. Gen. 26 1493

#### Cited By

•  [1] Chowdhury D 2000 Phys. Rep. 329 199 [2] Gao H W, Gao Z Y, Xie D F 2011 Acta Phys. Sin. 60 058902 (in Chinese) [郭宏伟, 高自友, 谢东繁 2011 物理学报 60 058902] [3] He H D, Lu W Z, Dong L Y 2011 Chin. Phys. B 20 040514 [4] Lakouari N, Ez-Zahraouy H, Benyoussef A 2014 Phys. Lett. A 378 3169 [5] Nagatani T 2014 Physica A 413 352 [6] Tang T Q, Huang H J, Shang H Y 2010 Chin. Phys. B 19 050517 [7] Jia B, Jiang R, Wu Q S 2003 Int. J Mod. Phys. C 14 1295 [8] Zhang L, Du W 2012 J. Wuhan Univ. Tech. 36 886 (in Chinese) [张邻, 杜文 2012 武汉理工大学学报 36 886] [9] Zhang Ao M H, Gao Z Y 2012 J. Trans. Sys. Engin. Inf. Tech. 12 46 (in Chinese) [张敖木翰, 高自友 2012 交通运输系统工程与信息 12 46] [10] Qian Y S, Zeng J W, Du J W, Liu Y F, Wang M, Wei J 2011 Acta Phys. Sin. 60 060505 (in Chinese) [钱勇生, 曾俊伟, 杜加, 刘宇斐, 王敏, 魏军 2011 物理学报 60 060505] [11] Kanai M Phys. Rev. E 2005 72 035102(R) [12] Yamauchi A, Tanimoto J, Hagishima A, Sagara H 2009 Phys. Rev. E 79 036104 [13] Nakata M, Yamauchi A, Tanimoto J, Hagishima A 2010 , Physica A 389 5353 [14] Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing:Science Press) (in Chinese) [贾斌, 高自友, 李克平, 李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社)] [15] Li L, Jiang R, Jia B, Zhao X M 2011 T heory and Application of Modern Traffic flow(Vol. 1)-freeway traffic flow (Beijing:Tsinghua University Press) [李力, 姜锐, 贾斌, 赵小梅 2011 现代交通流理论与应用卷I-高速公路交通流 (北京:清华大学出版社)] [16] Sun D 2011 Ph. D. Dissertation (Hefei:University of Science and Technology of Chian) (in Chinese) [孙舵 2011 博士学位论文 (合肥:中国科学技术大学)] [17] Nagel K, Schreckenberg M 1992 J. Phys. I (France) 2 2221 [18] Sun X Y, Xie Y B, He Z W, Wang B H 2011 Phys. Lett. A 375 2699 [19] Derrida B, Evans M R, Hakim V 1993 J. Phys. A:Math. Gen. 26 1493
•  [1] KONG LING-JIANG, LIU MU-REN, Lü XIAO-YANG. ANALYSIS ON MACROSCOPIC EQUATION TO ONE-DIMENSIONAL RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255 [2] Guo Hong-Wei, Gao Zi-You, Xie Dong-Fan. The influence of U-turn movement on the dynamics of traffic flow. Acta Physica Sinica, 2011, 60(5): 058902. doi: 10.7498/aps.60.058902 [3] Tian Hui-Li, Liu Mu-Ren, Kong Ling-Jiang. A study on an improved Nagel-Schreckenberg traffic flow -model with open boundary conditions. Acta Physica Sinica, 2002, 51(12): 2713-2718. doi: 10.7498/aps.51.2713 [4] Huang Ping-Hua, Tan Hui-Li, Kong Ling-Jiang, Liu Mu-Ren. A study of a main-road traffic flow model with turning-probability under open-bound condition. Acta Physica Sinica, 2005, 54(7): 3044-3050. doi: 10.7498/aps.54.3044 [5] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336 [6] Wang Jian, Li Ying-Hong, Cheng Bang-Qin, Su Chang-Bing, Song Hui-Min, Wu Yun. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation. Acta Physica Sinica, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513 [7] Yi Shi-He, Chen Zhi. Review of recent experimental studies of the shock train flow field in the isolator. Acta Physica Sinica, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401 [8] Wu Qin-Kuan. The shock solution for a class of the nonlinear equations by the Sinc-Galerkin method. Acta Physica Sinica, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561 [9] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512 [10] He Feng, Yang Jing-Long, Shen Meng-Yu. . Acta Physica Sinica, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918 [11] Zheng Rong-Sen, Lü Ji-Er, Zhu Liu-Hua, Chen Shi-Dong, Pang Shou-Quan. Intersection effects of arterial road for traffic flow. Acta Physica Sinica, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244 [12] Liang Yu-Juan, Xue Yu. Study on traffic flow affected by the road turning. Acta Physica Sinica, 2010, 59(8): 5325-5331. doi: 10.7498/aps.59.5325 [13] Liang Jia-Yuan, Ten Wei-Zhong, Xue Yu. Study on the energy dissipation of macroscopic traffic models. Acta Physica Sinica, 2013, 62(2): 024706. doi: 10.7498/aps.62.024706 [14] Chen Yan－Hong, Xue Yu. Effects of the stochastic delay probability on traffic flow*. Acta Physica Sinica, 2004, 53(12): 4145-4150. doi: 10.7498/aps.53.4145 [15] Xue Yu. Lattice models of the optimal traffic current. Acta Physica Sinica, 2004, 53(1): 25-30. doi: 10.7498/aps.53.25 [16] Wu Qin-Kuan. The indirect matching solution for a class of shock problems. Acta Physica Sinica, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510 [17] Zhu Liu_Hua, Kong Ling_Jiang, Liu Mu_Ren, Chen Shi_Dong. The effect of Noise-First and anticipation headway on traffic flow. Acta Physica Sinica, 2007, 56(5): 2517-2522. doi: 10.7498/aps.56.2517 [18] Kang Rui, Yang Kai. Effects of sensitive changing-lane rule on the off-ramp traffic system. Acta Physica Sinica, 2013, 62(23): 238901. doi: 10.7498/aps.62.238901 [19] Xiang Zheng-Tao, Chen Yu-Feng, Li Yu-Jin, Xiong Li. Complexity analysis of traffic flow based on multi-scale entropy. Acta Physica Sinica, 2014, 63(3): 038903. doi: 10.7498/aps.63.038903 [20] Zhang Yong, Li Shi-Gao. Analysis of scale-free characteristic on sharp variation point of traffic flow. Acta Physica Sinica, 2014, 63(24): 240509. doi: 10.7498/aps.63.240509
•  Citation:
##### Metrics
• Abstract views:  759
• Cited By: 0
##### Publishing process
• Received Date:  09 September 2014
• Accepted Date:  25 November 2014
• Published Online:  05 June 2015

## Study of the shock wave induced by closing partial road in traffic flow

• 1. School of systems Science, Beijing Normal University, Beijing 100875, China;
• 2. College of Physics and Electronic Engineering, Guangxi Teacher Education University, Nanning 530023, China;
• 3. School of Science, Southwest University of Science and Technology, Mianyang 621010, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 71461002, 11402058, 11202175), the Natural Science Foundation of Guangxi Province, China (Grant No. 2014GXNSFAA118012), and the project of outstanding young teachers’

Abstract: There often occurs traffic accident or road construction in real traffic, which leads to partial road closure. In this paper, we set up a traffic model for the partial road closure. According to the Nagel-Schreckenberg (NS) cellular automata update rules, the road can be separated into cells with the same length of 7.5 m. L = 4000 (corresponding to 30 km) is set to the road length in the simulations. For a larger system size, our simulations show that the results are the same with those presented in the following. In our model, vmax rtial road is closed (for convenience, we define the road length as L1), vmax 2= 2 (corresponding to 54 km/h) in the section of normal road (we define the road length as L2). In our simulations, let L1= L2 = 2000. We would like to mention that changing these parameter values does not have a qualitative influence on the simulation results. The simulation results demonstrate that three stationary phases exist, that is, low density (LD), high density (HD) and shock wave (SW). Two critical average densities are found:the critical point ρcr 1= 3/8 separates the LD phase from the SW phase, and ρcr 2= 1/2 separates the SW phase from the HD phase. We also analyze the relationship between the average flux J and average density ρ. In the LD phase J = 4/3ρ, in the HD phase J= 1 -ρ and J is 0.5 in the SW phase. We investigate the dependence of J on ρ. It is shown that with the increase of ρ, J first increases, at this stage J corresponds to the LD phase. Then J remains to be a constant 0.5 when the critical average density ρcr 1 is reached, and J corresponds to the SW phase (this time,J reaches the maximum value 0.5). One goal of traffic-management strategies is to maximize the flow. We find that the optimal choice of the average density is 3/8 ρρcr 2 is reached, J decreases with the increase of average density, which corresponds to the HD phase. We also obtain the relationship between the shock wave position and the average density by theoretical calculations, i.e. Si = i+4-8ρ, which is in agreement with simulations.

Reference (19)

/