Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gain characteristics of grapheme plasmain terahertz range

Li Dan Liu Yong Wang Huai-Xing Xiao Long-Sheng Ling Fu-Ri Yao Jian-Quan

Gain characteristics of grapheme plasmain terahertz range

Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene is a single atomic layer of carbon atoms forming a dense honeycomb crystal lattice. Now tremendous results of two dimensional (2D) graphene have been obtained recently in the electronic properties both experimentally and theoretically due to the massless energy dispersion relation of electrons and holes with zero (or close to zero) bandgap. In addition, through the process of stimulated emission in population inverted graphene layers, the coupling of the plasmons to interband electron-hole transitions can lead to plasmon amplification. Recently, research results have also shown that at moderate carrier densities (109-1011/cm2), the frequencies of plasma waves in graphene are in the terahertz range.In this paper, based on the Maxwell's equations and material constitutive equation, the gain characteristics of the surface plasmon in graphene are theoretically studied in the terahertz range. In the simulations process we assume a nonequilibrium situation in graphene, where the densities of the electron and the hole are equal. And the gain characteristics for different carrier concentrations, graphene temperature and the momentum relaxation time are calculated. The calculated results show that the peak gain positions shift towards the higher frequencies with the increase of the quasi Fermi level of electron and hole associated with electron-hole concentrations. The reason may be that the change rate of the electron quasi Fermi level is higher than the hole's and thus the distributions of electrons and holes in energy are broader, resulting in the peak gain frequency shifting towards higher frequencies. However, the results also indicate that the temperature of the graphene has little effect on both the peak gain value and the peak gain position of the plasmon. It is maybe because in the simulation process the temperature is taken to be less than 50 K, which is corresponding to the energy of the 1 THz. However the calculated results show that the frequencies of the gain peak positions are all larger than 1 THz, hence, the effects of the temperature on the peak gain value and peak position both could be neglected. Moreover, it is obviously seen that the peak gain value is a function of momentum relaxation time in graphene. This is because when the momentum relaxation time increases, more electrons will be excited, and this will increase the plasmon gain probability in graphene. However, the momentum relaxation time has no effect on the position of the gain peak. It is maybe because the momentum relaxation time has little effect on radiation frequency in the whole momentum relaxation period.
      Corresponding author: Ling Fu-Ri, lingfuri@163.com
    • Funds: Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB562).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Han P Y, Liu W, Xie Y H, Zhang X C 2009 Physics 38 395 (in Chinese) [韩鹏昱, 刘伟, 谢亚红, 张希成 2009 物理 38 395]

    [3]

    Geim A K, Macdonald A H 2007 Phys. Today 60 35

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [6]

    Rzhii V, Rzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [7]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [8]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya V 2009 J. Appl. Phys. 106 084507

    [9]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. 5 261

    [10]

    Zhang Y P, Zhang X, Liu L Y, Zhang H Y, Gao Y, Xu S L, Zhang H H 2012 Chin. J. Lasers 39 0111002 (in Chinese) [张玉萍, 张晓, 刘凌玉, 张洪艳, 高营, 徐世林, 张会会 2012 中国激光 39 0111002]

    [11]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2011 J. Appl. Phys. 110 094503

    [12]

    Victor R, Maxim R, Vladimir M 2011 Jpn. J. Appl. Phys. 50 094001

    [13]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H H 2012 Acta Phys. Sin. 61 047803 (in Chinese) [张玉萍, 张洪艳, 尹贻恒, 刘凌玉, 张晓, 高营, 张会会 2012 物理学报 61 047803]

    [14]

    Zhang Y P, Liu L Y, Chen Q, Feng Z H, Zhang X, Zhang H Y, Zhang H H 2013 Acta Phys. Sin. 62 097202 (in Chinese) [张玉萍, 刘凌玉, 陈琦, 冯志红, 张晓, 张洪艳, 张会会 2013 物理学报 62 097202]

    [15]

    Sun Y F, Sun J D, Zhou Y, Tan R B, Zeng C H, Xue W, Qin H, Zhang B S, Wu D M 2011 Appl. Phys. Lett. 98 252103

    [16]

    Guo N, Hu W D, Chen X S, Wang L, Lu W 2013 Opt. Express 21 1606

    [17]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [18]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [19]

    Vafek O 2006 Phys. Rev. Lett. 97 266406

    [20]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281

    [21]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [22]

    Chen P, Al A 2011 ACS Nano 5 5855

    [23]

    Vakil A, Engheta N 2011 Science 332 1291

    [24]

    Dubinov A A, Aleshkin V Y, Mitin V 2011 J. Phys.: Conden. Matter 23 145302

    [25]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [26]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [27]

    Chen J, Badioli M, AIonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [28]

    Watanabe T, Fukushima T, Yabe Y 2013 New J. Phys. 15 075003

    [29]

    Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628

    [30]

    George P A, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G 2008 Nano Lett. 8 4248

    [31]

    Batke E, Heitmann D, Tu C W 1986 Phy. Rev. B 34 6951

    [32]

    Allen S J, Tsyi D C, Logan R A 1977 Phys. Rev. Lett. 38 980

    [33]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330

    [34]

    Rana F 2007 Lasers and Electro-Optics Society, LEOS 2007. the 20th Annual Meeting of the IEEE Lake Buena Vista, USA, October 21-25, 2007 p862

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Han P Y, Liu W, Xie Y H, Zhang X C 2009 Physics 38 395 (in Chinese) [韩鹏昱, 刘伟, 谢亚红, 张希成 2009 物理 38 395]

    [3]

    Geim A K, Macdonald A H 2007 Phys. Today 60 35

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [6]

    Rzhii V, Rzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [7]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [8]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya V 2009 J. Appl. Phys. 106 084507

    [9]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. 5 261

    [10]

    Zhang Y P, Zhang X, Liu L Y, Zhang H Y, Gao Y, Xu S L, Zhang H H 2012 Chin. J. Lasers 39 0111002 (in Chinese) [张玉萍, 张晓, 刘凌玉, 张洪艳, 高营, 徐世林, 张会会 2012 中国激光 39 0111002]

    [11]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2011 J. Appl. Phys. 110 094503

    [12]

    Victor R, Maxim R, Vladimir M 2011 Jpn. J. Appl. Phys. 50 094001

    [13]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H H 2012 Acta Phys. Sin. 61 047803 (in Chinese) [张玉萍, 张洪艳, 尹贻恒, 刘凌玉, 张晓, 高营, 张会会 2012 物理学报 61 047803]

    [14]

    Zhang Y P, Liu L Y, Chen Q, Feng Z H, Zhang X, Zhang H Y, Zhang H H 2013 Acta Phys. Sin. 62 097202 (in Chinese) [张玉萍, 刘凌玉, 陈琦, 冯志红, 张晓, 张洪艳, 张会会 2013 物理学报 62 097202]

    [15]

    Sun Y F, Sun J D, Zhou Y, Tan R B, Zeng C H, Xue W, Qin H, Zhang B S, Wu D M 2011 Appl. Phys. Lett. 98 252103

    [16]

    Guo N, Hu W D, Chen X S, Wang L, Lu W 2013 Opt. Express 21 1606

    [17]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [18]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [19]

    Vafek O 2006 Phys. Rev. Lett. 97 266406

    [20]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281

    [21]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [22]

    Chen P, Al A 2011 ACS Nano 5 5855

    [23]

    Vakil A, Engheta N 2011 Science 332 1291

    [24]

    Dubinov A A, Aleshkin V Y, Mitin V 2011 J. Phys.: Conden. Matter 23 145302

    [25]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [26]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [27]

    Chen J, Badioli M, AIonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [28]

    Watanabe T, Fukushima T, Yabe Y 2013 New J. Phys. 15 075003

    [29]

    Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628

    [30]

    George P A, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G 2008 Nano Lett. 8 4248

    [31]

    Batke E, Heitmann D, Tu C W 1986 Phy. Rev. B 34 6951

    [32]

    Allen S J, Tsyi D C, Logan R A 1977 Phys. Rev. Lett. 38 980

    [33]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330

    [34]

    Rana F 2007 Lasers and Electro-Optics Society, LEOS 2007. the 20th Annual Meeting of the IEEE Lake Buena Vista, USA, October 21-25, 2007 p862

  • [1] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [2] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [3] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [4] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [5] Sun Jie, Yang Jian-Feng, Yan Su, Yang Jing-Jing, Huang Ming. Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide. Acta Physica Sinica, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [6] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [7] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [8] Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei. Propagation properties of the graphene surface plasmon in comb-like waveguide. Acta Physica Sinica, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [9] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [10] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [11] Deng Xin-Hua, Liu Jiang-Tao, Yuan Ji-Ren, Wang Tong-Biao. A new characteristics matrix method based on conductivity and its application in the optical properties of graphene in THz frequency range. Acta Physica Sinica, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [12] Deng Xin-Hua, Yuan Ji-Ren, Liu Jiang-Tao, Wang Tong-Biao. Tunable terahertz photonic crystal structures containing graphene. Acta Physica Sinica, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [13] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [14] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [15] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [16] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [17] Wang Yue, He Xun-Jun, Wu Yu-Ming, Wu Qun, Mei Jin-Shuo, Li Long-Wei, Yang Fu-Xing, Zhao Tuo, Li Le-Wei. Properties of terahertz surface plasmon ploaritons on carbon nanotube film with periodic grating. Acta Physica Sinica, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
    [18] Wang Fang, Zhang Long, Ma Tao, Wang Xu, Liu Yu-Fang, Ma Chun-wang. A symmetrical wedge-to-wedge THz hybrid SPPs waveguidewith low propagation loss. Acta Physica Sinica, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [19] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [20] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
  • Citation:
Metrics
  • Abstract views:  1172
  • PDF Downloads:  355
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2015
  • Accepted Date:  20 September 2015
  • Published Online:  05 January 2016

Gain characteristics of grapheme plasmain terahertz range

    Corresponding author: Ling Fu-Ri, lingfuri@163.com
  • 1. Department of Applied Physics, Hubei University of Education, Wuhan 430205, China;
  • 2. College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
  • 3. College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Fund Project:  Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB562).

Abstract: Graphene is a single atomic layer of carbon atoms forming a dense honeycomb crystal lattice. Now tremendous results of two dimensional (2D) graphene have been obtained recently in the electronic properties both experimentally and theoretically due to the massless energy dispersion relation of electrons and holes with zero (or close to zero) bandgap. In addition, through the process of stimulated emission in population inverted graphene layers, the coupling of the plasmons to interband electron-hole transitions can lead to plasmon amplification. Recently, research results have also shown that at moderate carrier densities (109-1011/cm2), the frequencies of plasma waves in graphene are in the terahertz range.In this paper, based on the Maxwell's equations and material constitutive equation, the gain characteristics of the surface plasmon in graphene are theoretically studied in the terahertz range. In the simulations process we assume a nonequilibrium situation in graphene, where the densities of the electron and the hole are equal. And the gain characteristics for different carrier concentrations, graphene temperature and the momentum relaxation time are calculated. The calculated results show that the peak gain positions shift towards the higher frequencies with the increase of the quasi Fermi level of electron and hole associated with electron-hole concentrations. The reason may be that the change rate of the electron quasi Fermi level is higher than the hole's and thus the distributions of electrons and holes in energy are broader, resulting in the peak gain frequency shifting towards higher frequencies. However, the results also indicate that the temperature of the graphene has little effect on both the peak gain value and the peak gain position of the plasmon. It is maybe because in the simulation process the temperature is taken to be less than 50 K, which is corresponding to the energy of the 1 THz. However the calculated results show that the frequencies of the gain peak positions are all larger than 1 THz, hence, the effects of the temperature on the peak gain value and peak position both could be neglected. Moreover, it is obviously seen that the peak gain value is a function of momentum relaxation time in graphene. This is because when the momentum relaxation time increases, more electrons will be excited, and this will increase the plasmon gain probability in graphene. However, the momentum relaxation time has no effect on the position of the gain peak. It is maybe because the momentum relaxation time has little effect on radiation frequency in the whole momentum relaxation period.

Reference (34)

Catalog

    /

    返回文章
    返回