Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative study on intense emission of velvet and cabon nanotube cathode

Cai Dan Liu Lie Ju Jin-Chuan Wang Hai-Tao Zhao Xue-Long Wang Xiao

Comparative study on intense emission of velvet and cabon nanotube cathode

Cai Dan, Liu Lie, Ju Jin-Chuan, Wang Hai-Tao, Zhao Xue-Long, Wang Xiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • So far, the investigations of carbon nanotube (CNT) cathode have been focused on the field emission with low current and voltage. However, the properties of the intense pulsed emission of CNT cathode have not been discussed deeply and comprehensively. In this paper, the intense emission properties of velvet and CNT cathode are studied in various aspects, such as emission capability, cathode plasma expansion, cathode initialization, emission uniformity, operation stability, outgassing property, and so on. Three different CNT cathodes are made by using electrophoresis deposition, chemical vapor deposition and also CNT paper (or buckypaper) gluing. Results show that the emission capability of CNT arrays and CNT paper cathode is definitely better than the velvet cathode. At the same diode voltage (~300 kV), the amplitudes of diode current of CNT array and CNT paper are 2.75 and 3.1 kA respectively, which are bigger than that of the velvet cathode (~1 kA). The orientation of CNT should not affect the emission capability of CNT cathodes. And the small radius of the tube wall and the existence of defects are suggested to be the reasons for the emission of electrons from the body of the tubes. The threshold electric field strength of intense emission of CNTs is about two-thirds of velvet cathode. The onset delay time of CNT cathode is shorter than the velvet cathode by about 12-17 ns at the same electric field growth rate. The time-evolution processes of the plasma expansion velocity of CNT and velvet cathodes are similar, which could be divided into three phases (rapid rising, quick decreasing and stable phase). In summary, the plasma expansion velocity of CNT cathode is less than one fourth that of velvet at the end of the first phase. During the stable phase, which sustains until the end of the voltage pulse, both cathodes have the same plasma expansion velocity (7 cm/s). The emission uniformity of the cathode has been studied by analyzing the distributions of cathode plasma spots and Cherenkov radiation light, which are captured by the high speed frame camera. The emission uniformity of CNT cathode is much better than that of the velvet cathode. Especially, the cathode plasma spots on the whole surface of CNT array cathode are very dense and uniform. The peak outgassing pressure of the CNT paper cathode is 0.3 Pa, which is one fifth that of the velvet cathode; while the peak outgassing pressure of the CNT array cathode is 0.042 Pa, which is the lowest, and the outgassing pressure of the CNT cathode is related to the fabrication methods. Volatile such as epoxy should be avoided in the fabrication processes. This CNT cathode appears to be suitable for intense emission source and high-power microwave device applications.
      Corresponding author: Cai Dan, 263277440@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263, 61401484).
    [1]

    Benford J, Swegle J A, Schamiloglu E 2007 High-power Microwaves (2nd Ed.) (New York: Taylor Francis Group) pp191-197

    [2]

    Barker R J, Schamiloglu E (translated by high-power microwave sources and technologies translation group) 2005 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp277-312 (in Chinese) [巴克 R L, 谢米洛格鲁 E 著 (高功率微波源与技术翻译组 译) 2005 高功率微波源与技术(北京: 清华大学出版社)第277312页]

    [3]

    Nguyen V H, Park W, Kim N, Song H 2014 Chin. Phys. B 23 058201

    [4]

    Nguyen V H, Song H J 2015 Chin. Phys. Lett. 32 038201

    [5]

    Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y, Wang Y G 2015 Chin. Phys. B 24 097601

    [6]

    Zhang X, Song Y R 2014 Chin. Phys. B 23 064204

    [7]

    Rosdin R Z R R, Admad F, Ali N M, Nor R M, Zulkepely N R, Harun S W, Arof H 2014 Chin. Phys. Lett. 31 094202

    [8]

    Ahmad F, Harun S W, Nor R M, Zulkepely N R, Ahmad H, Shum P 2013 Chin. Phys. Lett. 30 054210

    [9]

    Karimov K S, Sulaiman K, Ahmad Z, Akhmedov K M, Mateen A 2015 Chin. Phys. B 24 018801

    [10]

    Liu L, Liu X X, Wang X J 2014 Chin. Phys. B 23 117705

    [11]

    Liang J J, Huang Y, Zhang F, Li L, Ma Y F, Li F F, Chen Y S 2014 Chin. Phys. B 23 088802

    [12]

    Liu H T, Liu Y, Wang B S, Li C S 2015 Chin. Phys. Lett. 32 044102

    [13]

    Qu J R, Zheng J B, Wu G R, Cao C D 2013 Chin. Phys. Lett. 30 107801

    [14]

    deHeer W A, Chatelain A, Ugarte D 1995 Science 270 1179

    [15]

    Xia L S 2005 Ph. D. Dissertation (Mianyang: Chinese Academy of Engineering Physics) (in Chinese) [夏连胜 2005 博士学位论文 (绵阳: 中国工程物理研究院)]

    [16]

    Chen Y, Shaw D T, Guo L P 2000 Appl. Phys. Lett. 76 2469

    [17]

    Cui Y K, Zhang X B, Lei W, Wang Q L, Di Y S, Li C, Chen J 2013 High Power Laser Particle Beams 25 1509 (in Chinese) [崔云康, 张晓兵, 雷威, 王琦龙, 狄云松, 李驰, 陈静 2013 强激光与粒子束 25 1509]

    [18]

    Di Y S, Zhang X B, Lei W, Zhang L F, Cui Y K, Wang Q L, Chen J 2013 High Power Laser Particle Beams 25 1494 (in Chinese) [狄云松, 张晓兵, 雷威, 章莉芳, 崔云康, 王琦龙, 陈静 2013 强激光与粒子束 25 1494]

    [19]

    Xu W K, Yuan X S, Yuan J S, Yang L 2014 High Power Laser Particle Beams 26 124103 (in Chinese) [徐伟康, 袁学松, 袁劲松, 杨林 2014 强激光与粒子束 26 124103]

    [20]

    Yang H, Yuan X S, Li K, Li X Y, Yan Y 2014 High Power Laser Particle Beams 26 063023 (in Chinese) [杨欢, 袁学松, 李凯, 黎晓云, 鄢扬 2014 强激光与粒子束 26 063023]

    [21]

    Read M E, Schwarz W G, Kremer M J, Lennhoff J D, Carnahan D L, Kempa K, Ren Z F, Ren Z F 2001 Procceedings of the 2001 Particle Accelerator Conference, Chicago, U. S. A, June 18-22, 2001 p1026

    [22]

    Korenev S 2002 Proc. of 14th international Conference on High-power Particle Beams, Albuquerque, U. S. A, June 23-26, 2002 p385

    [23]

    Shiffler D, Zhou O, Bower C, LaCour M, Golby K 2004 IEEE Trans. Plasma Sci. 32 2152

    [24]

    Liao Q L, Zhang Y, Xia L S, Yan X Q, Qi J J, Huang Y H, Gao Z J 2007 J. Phys. D: Appl. Phys. 40 6626

    [25]

    Liao Q L, Zhang Y, Xia L S, Gao Z J, Huang Y H, Qi J J, Chang Y Q, Zhang H 2007 Carbon 45 1471

    [26]

    Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S, Zhang H 2007 Appl. Phys. Lett. 90 151504

    [27]

    Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S, Zhang H 2008 Acta Phys. Sin. 57 1778 (in Chinese) [廖庆亮, 张跃, 黄运华, 齐俊杰, 高战军, 夏连胜, 张篁 2008 物理学报 57 1778]

    [28]

    Liao Q L, Zhang Y, Xia L S, Qi J J, Huang Y H, Deng Z Q, Gao Z J, Cao J W 2008 Acta Phys. Sin. 57 2328 (in Chinese) [廖庆亮, 张跃, 夏连胜, 齐俊杰, 黄运华, 邓战强, 高战军, 曹佳伟 2008 物理学报 57 2328]

    [29]

    Liao Q L, Yang Y, Qi J J, Huang Y H, Xia L S, Liu L 2010 Appl. Phys. Lett. 96 073109

    [30]

    Liao Q L, Qin Z, Zhang Z, Qi J J, Zhang Y, Huang Y H, Liu L 2011 Nanoscale Res. Lett. 6 40

    [31]

    Chen Y, Xia L S, Zhang H, Liu X G, Liao Q L 2011 High Power Laser Particle Beams 23 775 (in Chinese) [谌怡, 夏连胜, 张篁, 刘星光, 廖庆亮 2011 强激光与粒子束 23 775]

    [32]

    Chen Y, Xia L S, Zhang H, Yang A M, Liu X G, Liao Q L 2012 High Power Laser Particle Beams 24 957 (in Chinese) [谌怡, 夏连胜, 张篁, 杨安民, 刘星光, 廖庆亮 2012 强激光与粒子束 24 957]

    [33]

    Liao Q L, Zhang Y, Xia L S, Huang Y H, Qi J J, Gao Z J, Zhang H 2007 Acta Phys. Sin. 56 5335 (in Chinese) [廖庆亮, 张跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张篁 2007 物理学报 56 5335]

    [34]

    Yang J 2013 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [杨杰 2013博士学位论文 (长沙: 国防科技大学)]

    [35]

    Liu Y 2008 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘懿 2008 硕士学位论文 (成都: 电子科技大学)]

    [36]

    Chen Y, Shaw D T 2000 Appl. Phys. Lett. 76 2469

    [37]

    Krasik Y E, Dunaevsky A, KrokhmaI A, Felsteiner J, Gunin A V, Pegel I V, Korovin S D 2001 J. Appl. Phys. 89 2379

    [38]

    Pushkarev A I, Sazonov R V 2009 IEEE Trans. Plasma Sci. 37 1901

    [39]

    Lau Y Y 2001 Phys. Rev. Lett. 87 278301

    [40]

    Zhang J, Zhong H H, Shu T, Luo L, Wang Y 2004 Chin. Phys. Lett. 21 2479

    [41]

    Zhang X P 2004 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [张晓萍 2004 博士学位论文 (长沙: 国防科技大学)]

    [42]

    Wang H G 2004 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [王弘刚 2004 博士学位论文 (长沙: 国防科技大学)]

    [43]

    Liu J 2011 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [刘静 2011 博士学位论文 (长沙: 国防科技大学)]

    [44]

    Liu L, Li L M, Zhang X P, Wen J C, Wan H, Zhang Y Z 2007 IEEE Trans. Plasma Sci. 35 361

    [45]

    Zhao X L 2012 M. S. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [赵雪龙 2012 硕士学位论文 (长沙: 国防科技大学)]

  • [1]

    Benford J, Swegle J A, Schamiloglu E 2007 High-power Microwaves (2nd Ed.) (New York: Taylor Francis Group) pp191-197

    [2]

    Barker R J, Schamiloglu E (translated by high-power microwave sources and technologies translation group) 2005 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp277-312 (in Chinese) [巴克 R L, 谢米洛格鲁 E 著 (高功率微波源与技术翻译组 译) 2005 高功率微波源与技术(北京: 清华大学出版社)第277312页]

    [3]

    Nguyen V H, Park W, Kim N, Song H 2014 Chin. Phys. B 23 058201

    [4]

    Nguyen V H, Song H J 2015 Chin. Phys. Lett. 32 038201

    [5]

    Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y, Wang Y G 2015 Chin. Phys. B 24 097601

    [6]

    Zhang X, Song Y R 2014 Chin. Phys. B 23 064204

    [7]

    Rosdin R Z R R, Admad F, Ali N M, Nor R M, Zulkepely N R, Harun S W, Arof H 2014 Chin. Phys. Lett. 31 094202

    [8]

    Ahmad F, Harun S W, Nor R M, Zulkepely N R, Ahmad H, Shum P 2013 Chin. Phys. Lett. 30 054210

    [9]

    Karimov K S, Sulaiman K, Ahmad Z, Akhmedov K M, Mateen A 2015 Chin. Phys. B 24 018801

    [10]

    Liu L, Liu X X, Wang X J 2014 Chin. Phys. B 23 117705

    [11]

    Liang J J, Huang Y, Zhang F, Li L, Ma Y F, Li F F, Chen Y S 2014 Chin. Phys. B 23 088802

    [12]

    Liu H T, Liu Y, Wang B S, Li C S 2015 Chin. Phys. Lett. 32 044102

    [13]

    Qu J R, Zheng J B, Wu G R, Cao C D 2013 Chin. Phys. Lett. 30 107801

    [14]

    deHeer W A, Chatelain A, Ugarte D 1995 Science 270 1179

    [15]

    Xia L S 2005 Ph. D. Dissertation (Mianyang: Chinese Academy of Engineering Physics) (in Chinese) [夏连胜 2005 博士学位论文 (绵阳: 中国工程物理研究院)]

    [16]

    Chen Y, Shaw D T, Guo L P 2000 Appl. Phys. Lett. 76 2469

    [17]

    Cui Y K, Zhang X B, Lei W, Wang Q L, Di Y S, Li C, Chen J 2013 High Power Laser Particle Beams 25 1509 (in Chinese) [崔云康, 张晓兵, 雷威, 王琦龙, 狄云松, 李驰, 陈静 2013 强激光与粒子束 25 1509]

    [18]

    Di Y S, Zhang X B, Lei W, Zhang L F, Cui Y K, Wang Q L, Chen J 2013 High Power Laser Particle Beams 25 1494 (in Chinese) [狄云松, 张晓兵, 雷威, 章莉芳, 崔云康, 王琦龙, 陈静 2013 强激光与粒子束 25 1494]

    [19]

    Xu W K, Yuan X S, Yuan J S, Yang L 2014 High Power Laser Particle Beams 26 124103 (in Chinese) [徐伟康, 袁学松, 袁劲松, 杨林 2014 强激光与粒子束 26 124103]

    [20]

    Yang H, Yuan X S, Li K, Li X Y, Yan Y 2014 High Power Laser Particle Beams 26 063023 (in Chinese) [杨欢, 袁学松, 李凯, 黎晓云, 鄢扬 2014 强激光与粒子束 26 063023]

    [21]

    Read M E, Schwarz W G, Kremer M J, Lennhoff J D, Carnahan D L, Kempa K, Ren Z F, Ren Z F 2001 Procceedings of the 2001 Particle Accelerator Conference, Chicago, U. S. A, June 18-22, 2001 p1026

    [22]

    Korenev S 2002 Proc. of 14th international Conference on High-power Particle Beams, Albuquerque, U. S. A, June 23-26, 2002 p385

    [23]

    Shiffler D, Zhou O, Bower C, LaCour M, Golby K 2004 IEEE Trans. Plasma Sci. 32 2152

    [24]

    Liao Q L, Zhang Y, Xia L S, Yan X Q, Qi J J, Huang Y H, Gao Z J 2007 J. Phys. D: Appl. Phys. 40 6626

    [25]

    Liao Q L, Zhang Y, Xia L S, Gao Z J, Huang Y H, Qi J J, Chang Y Q, Zhang H 2007 Carbon 45 1471

    [26]

    Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S, Zhang H 2007 Appl. Phys. Lett. 90 151504

    [27]

    Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S, Zhang H 2008 Acta Phys. Sin. 57 1778 (in Chinese) [廖庆亮, 张跃, 黄运华, 齐俊杰, 高战军, 夏连胜, 张篁 2008 物理学报 57 1778]

    [28]

    Liao Q L, Zhang Y, Xia L S, Qi J J, Huang Y H, Deng Z Q, Gao Z J, Cao J W 2008 Acta Phys. Sin. 57 2328 (in Chinese) [廖庆亮, 张跃, 夏连胜, 齐俊杰, 黄运华, 邓战强, 高战军, 曹佳伟 2008 物理学报 57 2328]

    [29]

    Liao Q L, Yang Y, Qi J J, Huang Y H, Xia L S, Liu L 2010 Appl. Phys. Lett. 96 073109

    [30]

    Liao Q L, Qin Z, Zhang Z, Qi J J, Zhang Y, Huang Y H, Liu L 2011 Nanoscale Res. Lett. 6 40

    [31]

    Chen Y, Xia L S, Zhang H, Liu X G, Liao Q L 2011 High Power Laser Particle Beams 23 775 (in Chinese) [谌怡, 夏连胜, 张篁, 刘星光, 廖庆亮 2011 强激光与粒子束 23 775]

    [32]

    Chen Y, Xia L S, Zhang H, Yang A M, Liu X G, Liao Q L 2012 High Power Laser Particle Beams 24 957 (in Chinese) [谌怡, 夏连胜, 张篁, 杨安民, 刘星光, 廖庆亮 2012 强激光与粒子束 24 957]

    [33]

    Liao Q L, Zhang Y, Xia L S, Huang Y H, Qi J J, Gao Z J, Zhang H 2007 Acta Phys. Sin. 56 5335 (in Chinese) [廖庆亮, 张跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张篁 2007 物理学报 56 5335]

    [34]

    Yang J 2013 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [杨杰 2013博士学位论文 (长沙: 国防科技大学)]

    [35]

    Liu Y 2008 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘懿 2008 硕士学位论文 (成都: 电子科技大学)]

    [36]

    Chen Y, Shaw D T 2000 Appl. Phys. Lett. 76 2469

    [37]

    Krasik Y E, Dunaevsky A, KrokhmaI A, Felsteiner J, Gunin A V, Pegel I V, Korovin S D 2001 J. Appl. Phys. 89 2379

    [38]

    Pushkarev A I, Sazonov R V 2009 IEEE Trans. Plasma Sci. 37 1901

    [39]

    Lau Y Y 2001 Phys. Rev. Lett. 87 278301

    [40]

    Zhang J, Zhong H H, Shu T, Luo L, Wang Y 2004 Chin. Phys. Lett. 21 2479

    [41]

    Zhang X P 2004 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [张晓萍 2004 博士学位论文 (长沙: 国防科技大学)]

    [42]

    Wang H G 2004 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [王弘刚 2004 博士学位论文 (长沙: 国防科技大学)]

    [43]

    Liu J 2011 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [刘静 2011 博士学位论文 (长沙: 国防科技大学)]

    [44]

    Liu L, Li L M, Zhang X P, Wen J C, Wan H, Zhang Y Z 2007 IEEE Trans. Plasma Sci. 35 361

    [45]

    Zhao X L 2012 M. S. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [赵雪龙 2012 硕士学位论文 (长沙: 国防科技大学)]

  • [1] Liao Qing-Liang, Zhang Yue, Xia Lian-Sheng, Huang Yun-Hua, Qi Jun-Jie, Gao Zhan-Jun, Zhang Huang. Research on intense pulsed emission of carbon nanotube cathode. Acta Physica Sinica, 2007, 56(9): 5335-5340. doi: 10.7498/aps.56.5335
    [2] Wang Yi-Jun, Cheng Yan. Field-emission current densities of carbon nanotube under the different electric fields. Acta Physica Sinica, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [3] Chen Rong-Hua, Zhu Ming-Yuan, Li Ying, Li Wen-Xian, Jin Hong-Ming, Dou Shi-Xue. Effect of pulsed magnetic field on critical current in carbon-nanotube-doped MgB2 wires. Acta Physica Sinica, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [4] Bai Xin, Wang Ming-Sheng, Liu Yang, Zhang Geng-Min, Zhang Zhao-Xiang, Zhao Xing-Yu, Guo Deng-Zhu, Xue Zeng-Quan. Field evaporation of the end of a carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [5] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [6] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [7] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [8] Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin. Thermal conductivity of carbon nanotube cable type composite. Acta Physica Sinica, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [9] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [10] Ma Yu-Long, Xiang Wei, Jin Da-Zhi, Chen Lei, Yao Ze-En, Wang Qi-Long. Field evaporation behaviour for carbon nanotube thin-film. Acta Physica Sinica, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [11] Liu Hong, Yin Hai-Jian, Xia Shu-Ning. Electrical properties of the deformed carbon nanotube field-effect transistors. Acta Physica Sinica, 2009, 58(12): 8489-8500. doi: 10.7498/aps.58.8489
    [12] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [13] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [14] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [15] Guo Da-Bo, Yuan Guang, Song Cui-Hua, Gu Chang-Zhi, Wang Qiang. Field emission of carbon nanotubes. Acta Physica Sinica, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [16] Wang Feng, Zeng Xiang-Hua, Xu Xiu-Lian. . Acta Physica Sinica, 2002, 51(8): 1778-1783. doi: 10.7498/aps.51.1778
    [17] Zhao Dong-Lin, Zeng Xian-Wei, Shen Zeng-Min. Synthesis of carbon nanotube/polyaniline composite nanotube and its microwave permittivity. Acta Physica Sinica, 2005, 54(8): 3878-3883. doi: 10.7498/aps.54.3878
    [18] Chen Jiang-Wei, Yang Lin-Feng. Electron transport properties of the finite double-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
    [19] Chen Wei, Luo Cheng-Lin. End structures of single-walled carbon nanotube at different temperatures. Acta Physica Sinica, 2006, 55(1): 386-392. doi: 10.7498/aps.55.386
    [20] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
  • Citation:
Metrics
  • Abstract views:  1123
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  19 September 2015
  • Accepted Date:  19 October 2015
  • Published Online:  05 February 2016

Comparative study on intense emission of velvet and cabon nanotube cathode

    Corresponding author: Cai Dan, 263277440@163.com
  • 1. College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;
  • 2. The PLA Unit 78010, Chengdu 610000, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263, 61401484).

Abstract: So far, the investigations of carbon nanotube (CNT) cathode have been focused on the field emission with low current and voltage. However, the properties of the intense pulsed emission of CNT cathode have not been discussed deeply and comprehensively. In this paper, the intense emission properties of velvet and CNT cathode are studied in various aspects, such as emission capability, cathode plasma expansion, cathode initialization, emission uniformity, operation stability, outgassing property, and so on. Three different CNT cathodes are made by using electrophoresis deposition, chemical vapor deposition and also CNT paper (or buckypaper) gluing. Results show that the emission capability of CNT arrays and CNT paper cathode is definitely better than the velvet cathode. At the same diode voltage (~300 kV), the amplitudes of diode current of CNT array and CNT paper are 2.75 and 3.1 kA respectively, which are bigger than that of the velvet cathode (~1 kA). The orientation of CNT should not affect the emission capability of CNT cathodes. And the small radius of the tube wall and the existence of defects are suggested to be the reasons for the emission of electrons from the body of the tubes. The threshold electric field strength of intense emission of CNTs is about two-thirds of velvet cathode. The onset delay time of CNT cathode is shorter than the velvet cathode by about 12-17 ns at the same electric field growth rate. The time-evolution processes of the plasma expansion velocity of CNT and velvet cathodes are similar, which could be divided into three phases (rapid rising, quick decreasing and stable phase). In summary, the plasma expansion velocity of CNT cathode is less than one fourth that of velvet at the end of the first phase. During the stable phase, which sustains until the end of the voltage pulse, both cathodes have the same plasma expansion velocity (7 cm/s). The emission uniformity of the cathode has been studied by analyzing the distributions of cathode plasma spots and Cherenkov radiation light, which are captured by the high speed frame camera. The emission uniformity of CNT cathode is much better than that of the velvet cathode. Especially, the cathode plasma spots on the whole surface of CNT array cathode are very dense and uniform. The peak outgassing pressure of the CNT paper cathode is 0.3 Pa, which is one fifth that of the velvet cathode; while the peak outgassing pressure of the CNT array cathode is 0.042 Pa, which is the lowest, and the outgassing pressure of the CNT cathode is related to the fabrication methods. Volatile such as epoxy should be avoided in the fabrication processes. This CNT cathode appears to be suitable for intense emission source and high-power microwave device applications.

Reference (45)

Catalog

    /

    返回文章
    返回