Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure

Chang Xiao-Yang Yao Shun Zhang Qi-Ling Zhang Yang Wu Bo Zhan Rong Yang Cui-Bai Wang Zhi-Yong

Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure

Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong
PDF
Get Citation
  • At present, solar cells are the main sources for spacecrafts. For a long time the bulk of the space power installations has been the solar arrays based on single junction silicon and gallium arsenide solar cells. In recent years a trend has been the active use of triple-junction GaAs solar cell with higher efficiency instead of single junction solar cells. One of the most important characteristics of solar cells used in spacecrafts is the resistance to radiation damages caused by high energy particles of the near-Earth space. According to the spectral response of triple-junction GaAs solar cell and the damage characteristics of the current under the condition of electron irradiation, the physical mechanism of cell attenuation can be determined: the current degradation originates mainly from the GaInAs subcells. These damages form additional centers of nonradiative recombination, which results in the reduction of the minority charge carrier diffusion lengths and in degradation of the solar cells photocurrent.The radiation damage caused by the electron irradiation will shorten the diffusion length of the base region and affect the collection of photo generated carriers. The ways of improving absorption of long wavelength light in GaInAs subcells with a thin base in using the distributed Bragg reflector can be investigated by the mathematical simulation method based on calculating the light propagation in a multilayer structure by means of the TFCalc software which can design optical structure. To estimate the validity of these methods for solar cells structures with distributed Bragg reflector, the spectral dependences of the photoresponse and the reflection coefficient with different base thickness values are calculated and compared with experimental results. Based on the physical mechanism of the degradation, the thickness of middle subcell base layer is reduced, and an appropriate structure of the distributed Bragg reflector is simulated by the TFCalc software. As a result, the new structure solar cells are that the thickness of the base layer is 1.5 m compared with the different middle subcell thickness values, and the distributed Bragg reflector structure with 15 paris of the Al0.1Ga0.9As/Al0.9Ga0.1As with 850 nm central wavelength is embedded in the middle subcell of the base layer, the distributed Bragg reflector has a highest reflectivity of more than 97% in the actual test, and a bandwidth of 94 nm, which can satisfy design requirement. After irradiating the new structure of solar cells, the decay of its short-circuited current is reduced by 50% compared with that of the original structure, and the remaining efficiency factor is increased by 2.3%.
      Corresponding author: Yao Shun, yaoshun@bjut.edu.cn
    • Funds: Project supported by the Zhongshan City Supporting Science and Technology for Company, China (Grant No. 2013A3FC0192) and the Strategic Emerging Industries Foundation of Zhongshan City, China (Grant No. ZSEI-2013468008).
    [1]

    Messenger S R, Jackson E M, Warner J H, Walters R J 2010 Proceedings of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hi, USA, June 20-25, 2010 p1106

    [2]

    Summers G P, Messenger S A, Walters R J, Burke E A 2001 Progr. Photovoltaics Res. Applicat. 9 103

    [3]

    Takamoto T, Agui T, Kamimura K, Kaneiwa M 2003 3rd World Conference on Phorovolfaic Energy Conversion Osaka, Japan, May 11-18, 2003 p581

    [4]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110]

    [5]

    Wu Y Y, Yue L, Hu J M, Xiao J D, Chen M B, Qian Y, Yang D Z, He S Y 2011 Spacecraft Environment Engineering 28 329 (in Chinese) [吴宜勇, 岳龙, 胡建民, 肖景东, 陈鸣波, 钱勇, 杨德庄, 何世禹 2011 航天器环境工程 28 329]

    [6]

    Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101 (in Chinese) [岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 蓝慕杰 2014 物理学报 63 188101]

    [7]

    Hu J M, Wu Y Y, He S, Qian Y, Chen M B, Yang D Z 2010 Acta Energiae Sol. Sin. 31 1568 (in Chinese) [胡建民, 吴宜勇, 何松, 钱勇, 陈鸣波, 杨德庄 2010 太阳能学报 31 1568]

    [8]

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802 (in Chinese) [齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802]

    [9]

    Lantratov V, Emelyanov V, Kalyuzhnyy N, Mintairov S, Shvarts M 2010 Adv. Sci.Technol. 74 225

    [10]

    Gao W, Gao H, Xu J, Zhang B, Liu C X, Wang B M, Mu J 2014 Chinese Journal of Power Sources 5 841 (in Chinese) [高伟, 高慧, 许军, 张宝, 刘长喜, 王保民, 穆杰 2014 电源技术 5 841]

    [11]

    Hu J M, Wu Y Y, Yang D Z, He S Y 2008 Nucl. Instr. Meth. Phys. Res. B 266 3577

    [12]

    Hu J M 2009 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese) [胡建民 2009 博士学位论文(哈尔滨:哈尔滨工业大学)]

    [13]

    Sato S I, Ohshima T, Imaizumi M 2009 J. Appl.Phys. 105 044504

    [14]

    An Q L, Cao Q S, Li G X, Liu B Y, Zhang Z K 1984 The Principle and Technology of Solar Cell (Shanghai: Science and Technology of China Press) pp91-94 (in Chinese) [安其霖, 曹国琛, 李国欣, 刘宝元, 张忠奎 1984 太阳电池原理与工艺 (上海:科学技术出版社) 第91-94页]

    [15]

    Bahrami A, Mohammadnejad S, Abkena N J 2014 Chin. Phys. B 23 28803

  • [1]

    Messenger S R, Jackson E M, Warner J H, Walters R J 2010 Proceedings of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hi, USA, June 20-25, 2010 p1106

    [2]

    Summers G P, Messenger S A, Walters R J, Burke E A 2001 Progr. Photovoltaics Res. Applicat. 9 103

    [3]

    Takamoto T, Agui T, Kamimura K, Kaneiwa M 2003 3rd World Conference on Phorovolfaic Energy Conversion Osaka, Japan, May 11-18, 2003 p581

    [4]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110]

    [5]

    Wu Y Y, Yue L, Hu J M, Xiao J D, Chen M B, Qian Y, Yang D Z, He S Y 2011 Spacecraft Environment Engineering 28 329 (in Chinese) [吴宜勇, 岳龙, 胡建民, 肖景东, 陈鸣波, 钱勇, 杨德庄, 何世禹 2011 航天器环境工程 28 329]

    [6]

    Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101 (in Chinese) [岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 蓝慕杰 2014 物理学报 63 188101]

    [7]

    Hu J M, Wu Y Y, He S, Qian Y, Chen M B, Yang D Z 2010 Acta Energiae Sol. Sin. 31 1568 (in Chinese) [胡建民, 吴宜勇, 何松, 钱勇, 陈鸣波, 杨德庄 2010 太阳能学报 31 1568]

    [8]

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802 (in Chinese) [齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802]

    [9]

    Lantratov V, Emelyanov V, Kalyuzhnyy N, Mintairov S, Shvarts M 2010 Adv. Sci.Technol. 74 225

    [10]

    Gao W, Gao H, Xu J, Zhang B, Liu C X, Wang B M, Mu J 2014 Chinese Journal of Power Sources 5 841 (in Chinese) [高伟, 高慧, 许军, 张宝, 刘长喜, 王保民, 穆杰 2014 电源技术 5 841]

    [11]

    Hu J M, Wu Y Y, Yang D Z, He S Y 2008 Nucl. Instr. Meth. Phys. Res. B 266 3577

    [12]

    Hu J M 2009 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese) [胡建民 2009 博士学位论文(哈尔滨:哈尔滨工业大学)]

    [13]

    Sato S I, Ohshima T, Imaizumi M 2009 J. Appl.Phys. 105 044504

    [14]

    An Q L, Cao Q S, Li G X, Liu B Y, Zhang Z K 1984 The Principle and Technology of Solar Cell (Shanghai: Science and Technology of China Press) pp91-94 (in Chinese) [安其霖, 曹国琛, 李国欣, 刘宝元, 张忠奎 1984 太阳电池原理与工艺 (上海:科学技术出版社) 第91-94页]

    [15]

    Bahrami A, Mohammadnejad S, Abkena N J 2014 Chin. Phys. B 23 28803

  • [1] Yin Fei, Hu Wei-Da, Quan Zhi-Jue, Zhang Bo, Hu Xiao-Ning, Li Zhi-Feng, Chen Xiao-Shuang, Lu Wei. Determination of electron diffusion length in HgCdTe photodiodes using laser beam induced current. Acta Physica Sinica, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [2] Lan Mu-Jie, Wu Yi-Yong, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, He Shi-Yu, Hu Jian-Min, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [3] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [4] Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo, Fan Xian-Hong, Li Min. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [5] Ran Qin, Wang Huan, Zhong Rui, Wu Jian-Chun, Zou Yu, Wang Jun. Diffusion behavior of di-interstitials with different configurations in tungsten. Acta Physica Sinica, 2019, 68(12): 126701. doi: 10.7498/aps.68.20190310
    [6] Sun Peng, Du Lei, He Liang, Chen Wen-Hao, Liu Yu-Dong, Zhao Ying. Radiation degradation mechanism of pn-junction diode based on 1/f noise variation. Acta Physica Sinica, 2012, 61(12): 127808. doi: 10.7498/aps.61.127808
    [7] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [8] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [9] He Xin-Fu, Yang Wen, Fan Sheng. Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [10] Zhu Yong, Li Bao-Hua, Xie Guo-Feng. Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation. Acta Physica Sinica, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
  • Citation:
Metrics
  • Abstract views:  548
  • PDF Downloads:  280
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2015
  • Accepted Date:  04 February 2016
  • Published Online:  20 May 2016

Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure

    Corresponding author: Yao Shun, yaoshun@bjut.edu.cn
  • 1. Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China;
  • 2. Redsolar New Energy Technology Co. Ltd., Zhongshan 528437, China
Fund Project:  Project supported by the Zhongshan City Supporting Science and Technology for Company, China (Grant No. 2013A3FC0192) and the Strategic Emerging Industries Foundation of Zhongshan City, China (Grant No. ZSEI-2013468008).

Abstract: At present, solar cells are the main sources for spacecrafts. For a long time the bulk of the space power installations has been the solar arrays based on single junction silicon and gallium arsenide solar cells. In recent years a trend has been the active use of triple-junction GaAs solar cell with higher efficiency instead of single junction solar cells. One of the most important characteristics of solar cells used in spacecrafts is the resistance to radiation damages caused by high energy particles of the near-Earth space. According to the spectral response of triple-junction GaAs solar cell and the damage characteristics of the current under the condition of electron irradiation, the physical mechanism of cell attenuation can be determined: the current degradation originates mainly from the GaInAs subcells. These damages form additional centers of nonradiative recombination, which results in the reduction of the minority charge carrier diffusion lengths and in degradation of the solar cells photocurrent.The radiation damage caused by the electron irradiation will shorten the diffusion length of the base region and affect the collection of photo generated carriers. The ways of improving absorption of long wavelength light in GaInAs subcells with a thin base in using the distributed Bragg reflector can be investigated by the mathematical simulation method based on calculating the light propagation in a multilayer structure by means of the TFCalc software which can design optical structure. To estimate the validity of these methods for solar cells structures with distributed Bragg reflector, the spectral dependences of the photoresponse and the reflection coefficient with different base thickness values are calculated and compared with experimental results. Based on the physical mechanism of the degradation, the thickness of middle subcell base layer is reduced, and an appropriate structure of the distributed Bragg reflector is simulated by the TFCalc software. As a result, the new structure solar cells are that the thickness of the base layer is 1.5 m compared with the different middle subcell thickness values, and the distributed Bragg reflector structure with 15 paris of the Al0.1Ga0.9As/Al0.9Ga0.1As with 850 nm central wavelength is embedded in the middle subcell of the base layer, the distributed Bragg reflector has a highest reflectivity of more than 97% in the actual test, and a bandwidth of 94 nm, which can satisfy design requirement. After irradiating the new structure of solar cells, the decay of its short-circuited current is reduced by 50% compared with that of the original structure, and the remaining efficiency factor is increased by 2.3%.

Reference (15)

Catalog

    /

    返回文章
    返回