Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of inverted polymer solar cells based on poly(dopamine)/ZnO as composite cathode buffer layer

Li Qi Zhang Yong

Mechanism of inverted polymer solar cells based on poly(dopamine)/ZnO as composite cathode buffer layer

Li Qi, Zhang Yong
PDF
Get Citation
  • Inverted polymer solar cells with P3HT:PCBM as active layer are fabricated based on poly(dopamine)/ZnO (PDA/ZnO) as composite cathode buffer layer. Effects of PDA/ZnO composite cathode buffer layer with the different self-polymerization times on the device performance are investigated. According to the results, the short circuit current and photoelectric conversion efficiency of polymer solar cells first increase then decrease with the increase of the self-polymerization time of PDA. For 10-min PDA self-polymerization, the photovoltaic performance of the device achieves the optimal values:open circuit voltage 0.66 V, short circuit curent density 9.70 mA/cm2, fill factor 68.06%, and power conversion efficiency 4.35% under irratiation of light with a strength of 100 mW/cm2. We conclude that the improvement of device performance is due to the PDA/ZnO composite cathode buffer layer reduced the contact resistance between the ZnO and ITO, at the same time, the presence of a large number of nitrogen groups in PDA is advantageous for the electronic collection of the inverted polymer solar cells. Meanwhile, polymer solar cell with PDA/ZnO as composite cathode buffer layer also exhibits excelent stability. In addition, PDA has a strong adhesive force that makes the ZnO interface layer on its surface not easy to fall off. This provides a new way of fabricating the flexible polymer solar cell devices.
      Corresponding author: Zhang Yong, zycq@scnu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 61377065, 61574064) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013CB040402009, 2014B090915004, 2015B010132009).
    [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Jiang X X, Xu H, Yang L G, Shi M M, Chen H Z 2009 Sol. Energy Mater. Sol. Cells 93 605

    [4]

    Lee K, Kim J Y, Park S H, Kim S H, Cho S, Heeger A J 2007 Adv. Mater. 19 2445

    [5]

    Park S, Tark S J, Lee J S, Lim H, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1020

    [6]

    Luo J, Wu H B, He C, He C, Li A Y, Yang W, Cao Y 2009 Appl. Phys. Lett. 95 043301

    [7]

    Huang F, Wu H B, Cao Y 2010 Chem. Soc. Rev. 39 2500

    [8]

    Yip H L, Hau S K, Baek N S, Ma H, Jen A K 2008 Adv. Mater. 20 2376

    [9]

    Yang T B, Wang M, Duan C H, Hu X W, Huang L, Peng J B, Huang F, Gong X 2012 Energy Environ. Sci. 5 8208

    [10]

    Kyaw A K K, Wang D H, Gupta V, Zhang J, Chand S, Bazan G C, Heeger A J 2013 Adv. Mater. 25 2397

    [11]

    Woo S, Kim W H, Kim H, Yi Y, Lyu H K, Kim Y 2014 Adv. Energy Mater. 130 1692

    [12]

    Lee H, Dellatore S M, Miller W M, Messersmith P B 2007 Science 318 426

    [13]

    Ye Q, Zhou F, Liu W 2011 Chem. Soci. Rev. 40 4244

    [14]

    Lee H, Scherer N F, Phillip B M 2006 PANS 103 12999

    [15]

    Jin Y X, Cheng Y R, Deng D Y, Jiang C J, Qi T K, Yang D L, Xiao F 2014 Appl. Mater. Interf. 6 1447

    [16]

    Lee H, Lee B P, Messersmith P B 2007 Nature 448 338

    [17]

    Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y 2011 Langmuir 27 14180

    [18]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [19]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [20]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107

    [21]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [22]

    Zhu G, Xu T, Lv T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

  • [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Jiang X X, Xu H, Yang L G, Shi M M, Chen H Z 2009 Sol. Energy Mater. Sol. Cells 93 605

    [4]

    Lee K, Kim J Y, Park S H, Kim S H, Cho S, Heeger A J 2007 Adv. Mater. 19 2445

    [5]

    Park S, Tark S J, Lee J S, Lim H, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1020

    [6]

    Luo J, Wu H B, He C, He C, Li A Y, Yang W, Cao Y 2009 Appl. Phys. Lett. 95 043301

    [7]

    Huang F, Wu H B, Cao Y 2010 Chem. Soc. Rev. 39 2500

    [8]

    Yip H L, Hau S K, Baek N S, Ma H, Jen A K 2008 Adv. Mater. 20 2376

    [9]

    Yang T B, Wang M, Duan C H, Hu X W, Huang L, Peng J B, Huang F, Gong X 2012 Energy Environ. Sci. 5 8208

    [10]

    Kyaw A K K, Wang D H, Gupta V, Zhang J, Chand S, Bazan G C, Heeger A J 2013 Adv. Mater. 25 2397

    [11]

    Woo S, Kim W H, Kim H, Yi Y, Lyu H K, Kim Y 2014 Adv. Energy Mater. 130 1692

    [12]

    Lee H, Dellatore S M, Miller W M, Messersmith P B 2007 Science 318 426

    [13]

    Ye Q, Zhou F, Liu W 2011 Chem. Soci. Rev. 40 4244

    [14]

    Lee H, Scherer N F, Phillip B M 2006 PANS 103 12999

    [15]

    Jin Y X, Cheng Y R, Deng D Y, Jiang C J, Qi T K, Yang D L, Xiao F 2014 Appl. Mater. Interf. 6 1447

    [16]

    Lee H, Lee B P, Messersmith P B 2007 Nature 448 338

    [17]

    Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y 2011 Langmuir 27 14180

    [18]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [19]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [20]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107

    [21]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [22]

    Zhu G, Xu T, Lv T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

  • [1] Li Qi, Zhang Yong. Enhanced performance of inverted polymer solar cell based on Al2O3/MoO3 as composite anode buffer layer. Acta Physica Sinica, 2018, 67(6): 067201. doi: 10.7498/aps.67.20172311
    [2] Huang Wen-Bo, Zeng Wen-Jin, Wang Li, Peng Jun-Biao. Negative capacitance in polymer light-emitting diodes. Acta Physica Sinica, 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [3] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [4] Huang Wen-Bo, Peng Jun-Biao. Carrier injection process of polymer light-emitting diodes. Acta Physica Sinica, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [5] Gong Wei, Xu Zheng, Zhao Su-Ling, Liu Xiao-Dong, Yang Qian-Qian, Fan Xing. Effects of NPB anode buffer layer on the performances of inverted bulk heterojunction polymer solar cells. Acta Physica Sinica, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [6] Liu Zhi-Fang, Zhao Su-Ling, Xu Zheng, Yang Qian-Qian, Zhao Ling, Liu Zhi-Min, Chen Hai-Tao, Yang Yi-Fan, Gao Song, Xu Xu-Rong. Enhancement of performance of P3HT:PCBM based polymer solar cell by Ag2O/PEDOT:PSS composite buffer layer. Acta Physica Sinica, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [7] Li Qing, Li Hai-Qiang, Zhao Juan, Huang Jiang, Yu Jun-Sheng. Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells. Acta Physica Sinica, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [8] Huang Zhuo-Yin, Li Guo-Long, Li Kan, Zhen Hong-Yu, Shen Wei-Dong, Liu Xiang-Dong, Liu Xu. Determination of optical constants and thickness of photoactive layer in polymer oslar cells by single transmission measurement. Acta Physica Sinica, 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [9] Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Kong Chao, Cao Wen-Zhe, Gong Wei, Liu Rui, Cao Xiao-Ning. Inserting various cathodic buffer layers to enhancethe performance of Pentacene/C60based organic solar cells. Acta Physica Sinica, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [10] Hao Zhi-Hong, Hu Zi-Yang, Zhang Jian-Jun, Hao Qiu-Yan, Zhao Ying. Influence of doped PEDOT ∶PSS on performance of polymer solar cells. Acta Physica Sinica, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
  • Citation:
Metrics
  • Abstract views:  344
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2017
  • Accepted Date:  20 June 2017
  • Published Online:  05 October 2017

Mechanism of inverted polymer solar cells based on poly(dopamine)/ZnO as composite cathode buffer layer

    Corresponding author: Zhang Yong, zycq@scnu.edu.cn
  • 1. Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China;
  • 2. Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangzhou 510631, China}
Fund Project:  Project supported by the National Nature Science Foundation of China (Grant Nos. 61377065, 61574064) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013CB040402009, 2014B090915004, 2015B010132009).

Abstract: Inverted polymer solar cells with P3HT:PCBM as active layer are fabricated based on poly(dopamine)/ZnO (PDA/ZnO) as composite cathode buffer layer. Effects of PDA/ZnO composite cathode buffer layer with the different self-polymerization times on the device performance are investigated. According to the results, the short circuit current and photoelectric conversion efficiency of polymer solar cells first increase then decrease with the increase of the self-polymerization time of PDA. For 10-min PDA self-polymerization, the photovoltaic performance of the device achieves the optimal values:open circuit voltage 0.66 V, short circuit curent density 9.70 mA/cm2, fill factor 68.06%, and power conversion efficiency 4.35% under irratiation of light with a strength of 100 mW/cm2. We conclude that the improvement of device performance is due to the PDA/ZnO composite cathode buffer layer reduced the contact resistance between the ZnO and ITO, at the same time, the presence of a large number of nitrogen groups in PDA is advantageous for the electronic collection of the inverted polymer solar cells. Meanwhile, polymer solar cell with PDA/ZnO as composite cathode buffer layer also exhibits excelent stability. In addition, PDA has a strong adhesive force that makes the ZnO interface layer on its surface not easy to fall off. This provides a new way of fabricating the flexible polymer solar cell devices.

Reference (22)

Catalog

    /

    返回文章
    返回