Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inverted metamorphic triple-junction solar cell and its radiation hardness for space applications

Song Ming-Hui Wang Du-Xiang Bi Jing-Feng Chen Wen-Jun Li Ming-Yang Li Sen-Lin Liu Guan-Zhou Wu Chao-Yu

Inverted metamorphic triple-junction solar cell and its radiation hardness for space applications

Song Ming-Hui, Wang Du-Xiang, Bi Jing-Feng, Chen Wen-Jun, Li Ming-Yang, Li Sen-Lin, Liu Guan-Zhou, Wu Chao-Yu
PDF
Get Citation
  • In recent years, with the development of solar cell technology, the conversion efficiency of the lattice-matched Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cell has achieved 30% under AM0 spectrum. As is well known, it is difficult to further improve the efficiency due to the limited bandgap combination. Therefore, an inverted metamorphic triple-junction solar cell is designed by replacing the Ge subcell with a 1.0 eV InGaAs subcell. The efficiency could be increased with the open-circuit voltage increasing, while the short circuit current maintains a similar value.#br#In this paper, the inverted metamorphic GaInP/GaAs/In0.3Ga0.7As triple-junction solar cells are grown on 4-inch GaAs substrates via metal organic chemical vapor deposition. Optimizing the epitaxy process, AlInGaAs graded buffer shows nearly 100% relaxation by the reciprocal space mapping of the high-resolution X-ray diffraction and low average threading dislocation density~5.4×106/cm2 evaluated from the cathodoluminescence image. Finally, the inverted metamorphic triple-junction solar cell with 24 cm2 area shows a conversion efficiency of 32% with an open-circuit voltage of 3.045 V and a short-circuit current of 404.5 mA under one sun, AM0 spectrum, 25℃ conditions, which is 5% higher than the lattice-matched GaInP/InGaAs/Ge triple-junction solar cell. Under 1 MeV electron irradiation test, the degradations of the external quantum efficiency and I-V characteristics of inverted metamorphic triple-junction solar cell are exhibited each as a function of fluence, and finally the end-of-life efficiency is 27.2% with a degradation of 15% under 1×1015/cm2 fluence. More experiments mainly focusing on the lattice quality of AlInGaAs graded buffer and the structure of In0.3Ga0.7As subcell, will be carried out to improve the efficiency and enhance the radiation hardness.
      Corresponding author: Song Ming-Hui, songminghui@sanan-e.com
    • Funds: Project supported by the Grand from Tianjin Little Giant Fund, China (Grant No. 14ZXLJGX00400) and the Tianjin Science and Technology Support Plan, China (Grant No. 16YFZCGX00030).
    [1]

    Ficcadenti M, Campesato R, Casale M, Gabetta G, Gori G, Kagan M, Kholev B A, Ivanov V 2014 10th European Space Power Conference Noordwijkerhout, Netherlands, April 13-17, 2014 p1

    [2]

    Guter W, Schöne J, Philipps S, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A, Dimroth F 2009 Appl. Phys. Lett. 94 223504

    [3]

    Fuhrmann D, Meusel M, Ebel L, Guter W, Kubera T, Köstler W, Strobl G 2013 9 th International Conference on Concentrator Photovoltaics Miyazaki, Japan, April 15-17, 2013 p1

    [4]

    Wanlass M W, Albin D S 2004 AIP Conf. Proc. 738 462

    [5]

    Wanlass M W, Ahrenkiel S P, Ahrenkiel R K, Albin D S, Carapella J J, Duda A, Geisz J F, Kurtz S, Moriarty T, Wehrer R J, Wernsman B 2005 31st IEEE Photovoltaics Specialists Conference Florida, USA, January 3-7, 2005 p530

    [6]

    Geisz J F, Sarah Kurtz, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriaty T E, Kiehl J T 2007 Appl. Phys. Lett. 91 023502

    [7]

    Cornfeld A B, Stan M, Varghese T, Diaz J, Ley A V, Cho B, Korostyshevsky A, Aiken D J, Sharps P R 2008 33rd IEEE Photovoltaic Specialists Conference California, USA, May 11-16, 2008 p1

    [8]

    Patel P, Aiken D, Boca A, Cho B, Chumney D, Clevenger M B, Cornfeld A, Fatemi N, Lin Y, McCarty J, Newman F, Sharps P, Spann J, Stan M, Steinfeldt J, Strautin C, Varghese T 2012 38th IEEE Photovoltaic Specialists Conference Austin, Texas, June 3-8, 2012 p110

    [9]

    Patel P, Aiken D, Chumney D, Cornfeld A, Lin Y, Mackos C, McCarty J, Miller N, Sharps P, Stan M 2012 38th IEEE Photovoltaic Specialists Conference Austin, Texas, June 3-8, 2012 p1

    [10]

    Takamoto T, Washio H, Juso H 2014 40th IEEE Photovoltaic Specialists Conference Denver, USA, June 8-13, 2014 p1

    [11]

    Chumney D, Aiken D, Cho B, Cornfeld A, Diaz J, Ley V, Mittman J, Newman F, Sharps P, Stan M, Varghese T 2010 35th IEEE Photovoltaic Specialists Conference Hawaii, USA, June 20-25, 2010 p113

    [12]

    Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W 2013 39th IEEE Photovoltaic Specialists Conference Florida, USA, June 16-21, 2013 p2790

    [13]

    Stan M, Aiken D, Cho B, Cornfeld A, Ley V, Patel P, Sharps P, Varghese T 2010 J. Cryst. Growth 312 1370

    [14]

    Wang D X, Song M H, Bi J F, Chen W J, Li S L, Liu G Z, Li M Y, Wu C Y 2017 Chin. Phys. Lett. 34 068801

    [15]

    Walters R J, Messenger S R, Cotal H R, Xapsos M A, Wojtczuk S J, Serreze H B, Summers G P 1997 J. Appl. Phys. 82 2164

  • [1]

    Ficcadenti M, Campesato R, Casale M, Gabetta G, Gori G, Kagan M, Kholev B A, Ivanov V 2014 10th European Space Power Conference Noordwijkerhout, Netherlands, April 13-17, 2014 p1

    [2]

    Guter W, Schöne J, Philipps S, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A, Dimroth F 2009 Appl. Phys. Lett. 94 223504

    [3]

    Fuhrmann D, Meusel M, Ebel L, Guter W, Kubera T, Köstler W, Strobl G 2013 9 th International Conference on Concentrator Photovoltaics Miyazaki, Japan, April 15-17, 2013 p1

    [4]

    Wanlass M W, Albin D S 2004 AIP Conf. Proc. 738 462

    [5]

    Wanlass M W, Ahrenkiel S P, Ahrenkiel R K, Albin D S, Carapella J J, Duda A, Geisz J F, Kurtz S, Moriarty T, Wehrer R J, Wernsman B 2005 31st IEEE Photovoltaics Specialists Conference Florida, USA, January 3-7, 2005 p530

    [6]

    Geisz J F, Sarah Kurtz, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriaty T E, Kiehl J T 2007 Appl. Phys. Lett. 91 023502

    [7]

    Cornfeld A B, Stan M, Varghese T, Diaz J, Ley A V, Cho B, Korostyshevsky A, Aiken D J, Sharps P R 2008 33rd IEEE Photovoltaic Specialists Conference California, USA, May 11-16, 2008 p1

    [8]

    Patel P, Aiken D, Boca A, Cho B, Chumney D, Clevenger M B, Cornfeld A, Fatemi N, Lin Y, McCarty J, Newman F, Sharps P, Spann J, Stan M, Steinfeldt J, Strautin C, Varghese T 2012 38th IEEE Photovoltaic Specialists Conference Austin, Texas, June 3-8, 2012 p110

    [9]

    Patel P, Aiken D, Chumney D, Cornfeld A, Lin Y, Mackos C, McCarty J, Miller N, Sharps P, Stan M 2012 38th IEEE Photovoltaic Specialists Conference Austin, Texas, June 3-8, 2012 p1

    [10]

    Takamoto T, Washio H, Juso H 2014 40th IEEE Photovoltaic Specialists Conference Denver, USA, June 8-13, 2014 p1

    [11]

    Chumney D, Aiken D, Cho B, Cornfeld A, Diaz J, Ley V, Mittman J, Newman F, Sharps P, Stan M, Varghese T 2010 35th IEEE Photovoltaic Specialists Conference Hawaii, USA, June 20-25, 2010 p113

    [12]

    Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W 2013 39th IEEE Photovoltaic Specialists Conference Florida, USA, June 16-21, 2013 p2790

    [13]

    Stan M, Aiken D, Cho B, Cornfeld A, Ley V, Patel P, Sharps P, Varghese T 2010 J. Cryst. Growth 312 1370

    [14]

    Wang D X, Song M H, Bi J F, Chen W J, Li S L, Liu G Z, Li M Y, Wu C Y 2017 Chin. Phys. Lett. 34 068801

    [15]

    Walters R J, Messenger S R, Cotal H R, Xapsos M A, Wojtczuk S J, Serreze H B, Summers G P 1997 J. Appl. Phys. 82 2164

  • [1] Wu Yi-Yong, Yang De-Zhuang, He Shi-Yu, Hu Jian-Min, Qian Yong. Damage of electron irradiation to the GaInP/GaAs/Ge triple-junction solar cell. Acta Physica Sinica, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [2] He Guo-Wei, Hu Gang, Chen Yi, Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [3] Quan Rong-Hui, Han Jian-Wei, Zhang Zhen-Long. Macroscopic model of internal discharging in polymer under electron beam irradiation. Acta Physica Sinica, 2013, 62(24): 245205. doi: 10.7498/aps.62.245205
    [4] Ma Guo-Liang, Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Hou Chun-Feng. Tensile deformation mechanism of PE/CNTs irradiated by electrons. Acta Physica Sinica, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [5] Ma Guo-Liang, Li Xing-Ji, Yang Jian-Qun, Liu Chao-Ming, Hou Chun-Feng. Melting and crystallization behaviours of the electrons irradiated LDPE/MWCNTs composites. Acta Physica Sinica, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [6] Feng Guo-Bao, Cao Meng, Cui Wan-Zhao, Li Jun, Liu Chun-Liang, Wang Fang. Transient characteristics of discharge of polymer sample after electon-beam irradiation. Acta Physica Sinica, 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [7] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [8] Wang Kai-Yue, Li Zhi-Hong, Gao Kai, Zhu Yu-Mei. Photoluminescence studies of electron irradiated diamond. Acta Physica Sinica, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [9] Wang Bo, Deng Ai-Hong, Miao Shan-Shan, Yang Jun, Zhao You-Wen, Dong Zhi-Yuan. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [10] Zhang Yong, Shan Zhi-Fa, Cai Jian-Jiu, Wu Hong-Qing, Li Jun-Cheng, Chen Kai-Xuan, Lin Zhi-Wei, Wang Xiang-Wu. Investigation of inverted metamorphic GaInP/GaAs/In0.3Ga0.7As (1 eV) triple junction solar cells for space applications. Acta Physica Sinica, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
  • Citation:
Metrics
  • Abstract views:  231
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2017
  • Accepted Date:  07 June 2017
  • Published Online:  20 September 2017

Inverted metamorphic triple-junction solar cell and its radiation hardness for space applications

    Corresponding author: Song Ming-Hui, songminghui@sanan-e.com
  • 1. Tianjin San'an Optoelectronics Co., Ltd, Tianjin 300387, China
Fund Project:  Project supported by the Grand from Tianjin Little Giant Fund, China (Grant No. 14ZXLJGX00400) and the Tianjin Science and Technology Support Plan, China (Grant No. 16YFZCGX00030).

Abstract: In recent years, with the development of solar cell technology, the conversion efficiency of the lattice-matched Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cell has achieved 30% under AM0 spectrum. As is well known, it is difficult to further improve the efficiency due to the limited bandgap combination. Therefore, an inverted metamorphic triple-junction solar cell is designed by replacing the Ge subcell with a 1.0 eV InGaAs subcell. The efficiency could be increased with the open-circuit voltage increasing, while the short circuit current maintains a similar value.#br#In this paper, the inverted metamorphic GaInP/GaAs/In0.3Ga0.7As triple-junction solar cells are grown on 4-inch GaAs substrates via metal organic chemical vapor deposition. Optimizing the epitaxy process, AlInGaAs graded buffer shows nearly 100% relaxation by the reciprocal space mapping of the high-resolution X-ray diffraction and low average threading dislocation density~5.4×106/cm2 evaluated from the cathodoluminescence image. Finally, the inverted metamorphic triple-junction solar cell with 24 cm2 area shows a conversion efficiency of 32% with an open-circuit voltage of 3.045 V and a short-circuit current of 404.5 mA under one sun, AM0 spectrum, 25℃ conditions, which is 5% higher than the lattice-matched GaInP/InGaAs/Ge triple-junction solar cell. Under 1 MeV electron irradiation test, the degradations of the external quantum efficiency and I-V characteristics of inverted metamorphic triple-junction solar cell are exhibited each as a function of fluence, and finally the end-of-life efficiency is 27.2% with a degradation of 15% under 1×1015/cm2 fluence. More experiments mainly focusing on the lattice quality of AlInGaAs graded buffer and the structure of In0.3Ga0.7As subcell, will be carried out to improve the efficiency and enhance the radiation hardness.

Reference (15)

Catalog

    /

    返回文章
    返回