搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究

潘佳萍 张冶文 李俊 吕天华 郑飞虎

引用本文:
Citation:

结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究

潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎

Migration behavior of space charge packet researched by using electron beam irradiation and real-time space charge distribution measurement in piezo-pressure wave propagation (PWP) method

Pan Jia-Ping, Zhang Ye-Wen, Li Jun, Lü Tian-Hua, Zheng Fei-Hu
PDF
HTML
导出引用
  • 空间电荷包现象是一种特殊的空间电荷现象, 具体表现为空间电荷以包的形态沿着极化电场的方向进行迁移. 目前针对空间电荷包现象的研究还存在一些不足, 研究的对象通常集中在聚乙烯及其交联产物中的正极性空间电荷包. 本文提出了一套用于负极性空间电荷包特性研究的一体化实验系统, 可进行电子束辐照与压电压力波法空间电荷分布实时测量相结合的实验研究, 并简要介绍了该系统的结构与功能. 该系统适用于不同厚度范围的各类绝缘电介质样品在不同电场下的实验研究. 本文使用该实验系统初步研究了在不同外加电场(15, 20, 25, 30 kV/mm)下聚丙烯与聚甲基丙烯酸甲酯样品内负极性空间电荷包的迁移行为, 并从实验结果中提取了负极性载流子(电子)的迁移特性. 聚丙烯与聚甲基丙烯酸甲酯样品中电子的迁移速率均存在随着电场的增加而减小的负微分迁移率现象, 聚丙烯中该现象出现的阈值电场约为26.0 kV/mm, 聚甲基丙烯酸甲酯中该现象出现的阈值电场约为19.5 kV/mm, 消失的截止电场约为27.5 kV/mm.
    The space charge packet is a special sort of space charge phenomenon that is characterized by the migration of aggregated space charge in the form of a packet in the sample. Currently, most of the experimental and simulation studies on the generation and migration of space charge packets focus on the space charge packets with positive polarity in polyethylene and their cross-linking products, while the characteristics of the space charge packets with negative polarity still need studying. This paper presents an integrated experimental system for studying space charge packet with negative polarity, which enables experimental studies combining electron beam irradiation technique and real-time space charge distribution measurement. The beam flux for electron beam irradiation is controlled by a metal grid with an optical fiber-electric relay, and the space charge distribution measurement is performed by the piezo- pressure wave propagation method. The system achieves a withstand voltage value of 17 kV and a measuring resolution of 25 ns for space charge distribution measurement and is suitable for experimental studies of various material samples with different thickness ranges under different electric fields. In this work, the migration behaviors of space charge packets with negative polarity in polypropylene (PP) and polymethyl methacrylate (PMMA) samples under different applied electric fields (15, 20, 25, 30 kV/mm) are studied by using the experimental system. The relationship between the migration properties of carriers with negative polarity (electrons) and the electric field can be extracted from the experimental results. The “negative differential mobility” phenomenon is found for both materials, i.e. the migration rate decreases with the increase of the electric field. The threshold electric field for the “negative differential mobility” phenomenon of electrons in PP sample is about 26.0 kV/mm while the threshold electric field for the “negative differential mobility” phenomenon of electrons in PMMA sample is 19.5 kV/mm, and the phenomenon disappears at an electric field of 27.5 kV/mm. The electric field where the "negative differential mobility" phenomenon of electrons appears and disappears in different materials can be extracted by using the experimental system proposed in this paper.
      通信作者: 张冶文, yewen.zhang@tongji.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51877153)资助的课题.
      Corresponding author: Zhang Ye-Wen, yewen.zhang@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51877153).
    [1]

    杜伯学, 韩晨磊, 李进, 李忠磊 2019 电工技术学报 34 179Google Scholar

    Du B X, Han C L, Li J, Li Z L 2019 Trans. Chin. Electrotech. Soc. 34 179Google Scholar

    [2]

    屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁 2012 物理学报 61 017104Google Scholar

    Tu D M, Wang X, Lü Z P, Wu K, Peng Z R 2012 Acta Phys. Sin. 61 017104Google Scholar

    [3]

    Zhang Y W, Lewiner J 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778Google Scholar

    [4]

    Hozumi N, Suzuki H 1994 IEEE Trans. Dielectr. Electr. Insul. 1 1068Google Scholar

    [5]

    Matsui K, Tanaka Y, Takada T, Fukao T, Fukunaga K, Maeno T, Alison J M 2005 IEEE Trans. Dielectr. Electr. Insul. 12 406Google Scholar

    [6]

    夏俊峰, 张冶文, 郑飞虎, 雷清泉 2009 物理学报 58 8529Google Scholar

    Xia J F, Zhang Y W, Zheng F H, Lei Q Q 2009 Acta Phys. Sin. 58 8529Google Scholar

    [7]

    Zheng F H, Zhang Y W, Gong B, Zhu J W, Wu C S 2005 Sci. China Ser. E: Technol. Sci. 48 354Google Scholar

    [8]

    Kon H, Suzuoki Y, Mizutani T, Ieda M, Yoshifuji N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 380Google Scholar

    [9]

    Hozumi N, Takeda T, Suzuki H, Okamoto T 1998 IEEE Trans. Dielectr. Electr. Insul. 5 82Google Scholar

    [10]

    Fabiani D, Montanari G, Dissado L, Laurent C, Teyssedre G 2009 IEEE Trans. Dielectr. Electr. Insul. 16 241Google Scholar

    [11]

    Zhao J, Chen G, Lewin P L 2012 J. Appl. Phys. 112 034116Google Scholar

    [12]

    夏俊峰, 张冶文, 郑飞虎, 雷清泉 2010 物理学报 59 508Google Scholar

    Xia J F, Zhang Y W, Zheng F H, Lei Q Q 2010 Acta Phys. Sin. 59 508Google Scholar

    [13]

    Xia J F, Zhang Y W, Zheng F H, An Z L, Lei Q Q 2011 J. Appl. Phys. 109 034101Google Scholar

    [14]

    张冶文, 赵晖, 郭世忠, 郑飞虎, 安振连 2016 电工技术学报 31 145Google Scholar

    Zhang Y W, Zhao H, Guo Sh Z, Zheng F H, An Z L 2016 Trans. Chin. Electrotech. Soc. 31 145Google Scholar

    [15]

    金维芳 1997 电介质物理学 (北京: 机械工业出版社) 第116页

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press) p116

    [16]

    郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福 2003 物理学报 52 1137Google Scholar

    Zheng F H, Zhang Y W, Wu C S, Li J X, Xia Z F 2003 Acta Phys. Sin. 52 1137Google Scholar

    [17]

    Weber K H 1963 Nucl. Instrum. Methods 25 261Google Scholar

    [18]

    Ieda M 1984 IEEE Trans. Electr. Insul. EI-19 162Google Scholar

    [19]

    夏钟福 2001 驻极体 (北京: 科学出版社) 第199—206页

    Xia Z F 2001 Electret (Beijing: China Science Press) pp199–206

    [20]

    Jones J P, Llewellyn J P, Lewis T J 2005 IEEE Trans. Dielectr. Electr. Insul. 12 951Google Scholar

    [21]

    Chen G, Zhao J 2011 J. Phys. D: Appl. Phys. 44 212001Google Scholar

  • 图 1  电子束辐照系统的结构示意图与实物图 (a) 结构示意图; (b) 实物图

    Fig. 1.  Schematic diagram and actual photo of the electron beam irradiation system: (a) Structure diagram; (b) actual photo.

    图 2  金属栅极调控下的电子束束流量

    Fig. 2.  Electron beam flux controlled by metal grid.

    图 3  压电压力波法测量装置的结构示意图

    Fig. 3.  Schematic diagram of the piezo-PWP method measurement device.

    图 4  相同辐照条件下不同聚丙烯样品内的初始空间电荷分布(撤压信号)

    Fig. 4.  Space charge distribution in different PP samples under the same irradiation conditions (without applied voltage).

    图 5  不同外加电场下聚丙烯样品内部的空间电荷分布 (a) 15 kV/mm; (b) 20 kV/mm; (c) 25 kV/mm; (d) 30 kV/mm

    Fig. 5.  Space charge distribution inside PP samples under different applied electric fields: (a) 15 kV/mm; (b) 20 kV/mm; (c) 25 kV/mm; (d) 30 kV/mm.

    图 6  不同外加电场下聚丙烯样品内部的局部电场分布 (a) 15 kV/mm; (b) 20 kV/mm; (c) 25 kV/mm; (d) 30 kV/mm

    Fig. 6.  Electric field distribution inside PP samples under different applied electric fields: (a) 15 kV/mm; (b) 20 kV/mm; (c) 25 kV/mm; (d) 30 kV/mm.

    图 7  聚丙烯样品内电子的迁移速率与局部电场的关系

    Fig. 7.  Migration rate of electrons as a function of the local electric field inside PP samples.

    图 8  聚甲基丙烯酸甲酯样品内电子的迁移速率与局部电场的关系

    Fig. 8.  Migration rate of electrons as a function of the local electric field inside PMMA samples.

  • [1]

    杜伯学, 韩晨磊, 李进, 李忠磊 2019 电工技术学报 34 179Google Scholar

    Du B X, Han C L, Li J, Li Z L 2019 Trans. Chin. Electrotech. Soc. 34 179Google Scholar

    [2]

    屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁 2012 物理学报 61 017104Google Scholar

    Tu D M, Wang X, Lü Z P, Wu K, Peng Z R 2012 Acta Phys. Sin. 61 017104Google Scholar

    [3]

    Zhang Y W, Lewiner J 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778Google Scholar

    [4]

    Hozumi N, Suzuki H 1994 IEEE Trans. Dielectr. Electr. Insul. 1 1068Google Scholar

    [5]

    Matsui K, Tanaka Y, Takada T, Fukao T, Fukunaga K, Maeno T, Alison J M 2005 IEEE Trans. Dielectr. Electr. Insul. 12 406Google Scholar

    [6]

    夏俊峰, 张冶文, 郑飞虎, 雷清泉 2009 物理学报 58 8529Google Scholar

    Xia J F, Zhang Y W, Zheng F H, Lei Q Q 2009 Acta Phys. Sin. 58 8529Google Scholar

    [7]

    Zheng F H, Zhang Y W, Gong B, Zhu J W, Wu C S 2005 Sci. China Ser. E: Technol. Sci. 48 354Google Scholar

    [8]

    Kon H, Suzuoki Y, Mizutani T, Ieda M, Yoshifuji N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 380Google Scholar

    [9]

    Hozumi N, Takeda T, Suzuki H, Okamoto T 1998 IEEE Trans. Dielectr. Electr. Insul. 5 82Google Scholar

    [10]

    Fabiani D, Montanari G, Dissado L, Laurent C, Teyssedre G 2009 IEEE Trans. Dielectr. Electr. Insul. 16 241Google Scholar

    [11]

    Zhao J, Chen G, Lewin P L 2012 J. Appl. Phys. 112 034116Google Scholar

    [12]

    夏俊峰, 张冶文, 郑飞虎, 雷清泉 2010 物理学报 59 508Google Scholar

    Xia J F, Zhang Y W, Zheng F H, Lei Q Q 2010 Acta Phys. Sin. 59 508Google Scholar

    [13]

    Xia J F, Zhang Y W, Zheng F H, An Z L, Lei Q Q 2011 J. Appl. Phys. 109 034101Google Scholar

    [14]

    张冶文, 赵晖, 郭世忠, 郑飞虎, 安振连 2016 电工技术学报 31 145Google Scholar

    Zhang Y W, Zhao H, Guo Sh Z, Zheng F H, An Z L 2016 Trans. Chin. Electrotech. Soc. 31 145Google Scholar

    [15]

    金维芳 1997 电介质物理学 (北京: 机械工业出版社) 第116页

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press) p116

    [16]

    郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福 2003 物理学报 52 1137Google Scholar

    Zheng F H, Zhang Y W, Wu C S, Li J X, Xia Z F 2003 Acta Phys. Sin. 52 1137Google Scholar

    [17]

    Weber K H 1963 Nucl. Instrum. Methods 25 261Google Scholar

    [18]

    Ieda M 1984 IEEE Trans. Electr. Insul. EI-19 162Google Scholar

    [19]

    夏钟福 2001 驻极体 (北京: 科学出版社) 第199—206页

    Xia Z F 2001 Electret (Beijing: China Science Press) pp199–206

    [20]

    Jones J P, Llewellyn J P, Lewis T J 2005 IEEE Trans. Dielectr. Electr. Insul. 12 951Google Scholar

    [21]

    Chen G, Zhao J 2011 J. Phys. D: Appl. Phys. 44 212001Google Scholar

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] 曹胜果, 韩佳凝, 李占海, 张振华. 扶手椅型C3B纳米带: 结构稳定性、电子特性及调控效应. 物理学报, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [3] 韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华. 非金属原子掺杂扶手椅型砷烯纳米管的磁电子性质及调控. 物理学报, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [4] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2022, 71(1): 016102. doi: 10.7498/aps.71.20211229
    [5] 汤家鑫, 范志强, 邓小清, 张振华. 非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应. 物理学报, 2022, 71(11): 116101. doi: 10.7498/aps.71.20212342
    [6] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [7] 周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. 磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计. 物理学报, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [8] 周书星, 方仁风, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. InP HEMT外延结构材料抗电子辐照加固设计研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211265
    [9] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211229
    [10] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [11] 陈航宇, 宋建军, 张洁, 胡辉勇, 张鹤鸣. 小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现. 物理学报, 2018, 67(6): 068501. doi: 10.7498/aps.67.20172138
    [12] 杜玉峰, 崔丽娟, 李金升, 李然然, 万发荣. 铝中气泡在电子束辐照下的异常放热现象. 物理学报, 2018, 67(21): 216101. doi: 10.7498/aps.67.20181140
    [13] 吴学科, 黄伟其, 董泰阁, 王刚, 刘世荣, 秦朝介. 热退火、激光束和电子束等作用对纳米硅制备及其局域态发光特性的影响. 物理学报, 2016, 65(10): 104202. doi: 10.7498/aps.65.104202
    [14] 李杰, 高进, 万发荣. 电子束辐照下的注氘铝的结构变化. 物理学报, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [15] 玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 曾骏哲. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究. 物理学报, 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [16] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [17] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察. 物理学报, 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [18] 赵衡煜, 俞平胜, 郭鑫, 苏良碧, 李欣年, 方晓明, 杨秋红, 徐军. 电子束辐照诱导Bi:α-BaB2O4 单晶近红外宽带发光的研究. 物理学报, 2011, 60(9): 097802. doi: 10.7498/aps.60.097802
    [19] 夏俊峰, 张冶文, 郑飞虎, 雷清泉. 基于类耿氏效应的低密度聚乙烯中空间电荷包行为的模拟仿真. 物理学报, 2010, 59(1): 508-514. doi: 10.7498/aps.59.508
    [20] 夏俊峰, 张冶文, 郑飞虎, 雷清泉. 聚乙烯空间电荷包行为的形成机理与仿真方法研究. 物理学报, 2009, 58(12): 8529-8536. doi: 10.7498/aps.58.8529
计量
  • 文章访问数:  1005
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-18
  • 修回日期:  2023-09-26
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-20

/

返回文章
返回