Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser

Qi Jun-Feng Zhong Zhu-Qiang Wang Guang-Na Xia Guang-Qiong Wu Zheng-Mao

Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser

Qi Jun-Feng, Zhong Zhu-Qiang, Wang Guang-Na, Xia Guang-Qiong, Wu Zheng-Mao
PDF
Get Citation
  • Optical chaos based on semiconductor laser (SL) has some vital applications such as optical chaos secure communication, high-speed physical random number generation, chaos lidar, etc. Among various schemes to drive an SL into chaos, the introduction of external cavity feedback is one of the most popular techniques, which can generate chaos signals with high dimension and complexity. For the chaos output from an external cavity feedback SL, a time-delay signature (TDS) and bandwidth are two key indexes to assess the chaos signal quality. In this work, according to the rate-equation model of an optical feedback SL, we theoretically investigate the characteristics of TDS and effective bandwidth (EWB) of chaotic output from a Gaussian apodized fiber Bragg grating (GAFBG) feedback SL (GAFBGF-SL). The results show that with the increase of feedback strength, the GAFBGF-SL experiences a quasi-periodic route to chaos. Through selecting the suitable feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the TDS of chaotic output from the GAFBGF-SL can be efficiently suppressed to a level below 0.02. Furthermore, by mapping the TDS and EWB in the parameter space of the feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the optimized parameter region, which is suitable for achieving chaotic signal with weak TDS and wide bandwidth, can be determined. We believe that this work will be helpful in acquiring the high quality chaotic signals and relevant applications.
      Corresponding author: Xia Guang-Qiong, gqxia@swu.edu.cn;zmwu@swu.edu.cn ; Wu Zheng-Mao, gqxia@swu.edu.cn;zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184).
    [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362

    [3]

    Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708

    [4]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [5]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [6]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [7]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [8]

    Yan S L 2016 Chin. Phys. B 25 090504

    [9]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [10]

    Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202

    [11]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [14]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [15]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [19]

    Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209

    [20]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [21]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [22]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [23]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408

    [24]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758

    [26]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [27]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [28]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [29]

    Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308

    [30]

    Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359

    [31]

    Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930

    [32]

    Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541

    [33]

    Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459

    [34]

    Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911

    [35]

    Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277

    [36]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [37]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

  • [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362

    [3]

    Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708

    [4]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [5]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [6]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [7]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [8]

    Yan S L 2016 Chin. Phys. B 25 090504

    [9]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [10]

    Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202

    [11]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [14]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [15]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [19]

    Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209

    [20]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [21]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [22]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [23]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408

    [24]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758

    [26]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [27]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [28]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [29]

    Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308

    [30]

    Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359

    [31]

    Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930

    [32]

    Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541

    [33]

    Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459

    [34]

    Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911

    [35]

    Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277

    [36]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [37]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

  • [1] Li Zeng, Feng Yu-Ling, Wang Xiao-Qian, Yao Zhi-Hai. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser. Acta Physica Sinica, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [2] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [3] Ding Ling, Wu Jia-Gui, Xia Guang-Qiong, Shen Jin-Ting, Li Neng-Yao, Wu Zheng-Mao. Suppression of time delay feedback signatures in a semiconductor laser with double optical feedback. Acta Physica Sinica, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [4] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [5] Yang Ling-Zhen, Qiao Zhan-Duo, Wu Yun-Qiao, Wang Yun-Cai. Study of chaotic bandwidth in erbium-doped ring fiber laser. Acta Physica Sinica, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [6] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [7] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [8] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [9] Zhu Zhang-Ming, Hao Bao-Tian, Li Ru, Yang Yin-Tang. A novel nanometer CMOS interconnect optimal model with target delay and bandwidth constraint. Acta Physica Sinica, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [10] Yan Sen-Lin. Control of chaos in an external cavity delay feedback semiconductor laser via modulating the polarizing light. Acta Physica Sinica, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
  • Citation:
Metrics
  • Abstract views:  205
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2017
  • Accepted Date:  20 August 2017
  • Published Online:  20 December 2017

Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser

Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184).

Abstract: Optical chaos based on semiconductor laser (SL) has some vital applications such as optical chaos secure communication, high-speed physical random number generation, chaos lidar, etc. Among various schemes to drive an SL into chaos, the introduction of external cavity feedback is one of the most popular techniques, which can generate chaos signals with high dimension and complexity. For the chaos output from an external cavity feedback SL, a time-delay signature (TDS) and bandwidth are two key indexes to assess the chaos signal quality. In this work, according to the rate-equation model of an optical feedback SL, we theoretically investigate the characteristics of TDS and effective bandwidth (EWB) of chaotic output from a Gaussian apodized fiber Bragg grating (GAFBG) feedback SL (GAFBGF-SL). The results show that with the increase of feedback strength, the GAFBGF-SL experiences a quasi-periodic route to chaos. Through selecting the suitable feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the TDS of chaotic output from the GAFBGF-SL can be efficiently suppressed to a level below 0.02. Furthermore, by mapping the TDS and EWB in the parameter space of the feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the optimized parameter region, which is suitable for achieving chaotic signal with weak TDS and wide bandwidth, can be determined. We believe that this work will be helpful in acquiring the high quality chaotic signals and relevant applications.

Reference (37)

Catalog

    /

    返回文章
    返回