[1] |
Wang Yu, Wu Yi-Hao, Li Yi-Pu, Lu Kai-Xiang, Yi Tian-Cheng, Zhang Yun-Bo. Squeezing and evolution of single particle by frequency jumping in two-dimensional rotating harmonic. Acta Physica Sinica,
2024, 73(7): 074202.
doi: 10.7498/aps.73.20231929
|
[2] |
Cheng Zheng-Fu, Zheng Rui-Lun. Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene. Acta Physica Sinica,
2016, 65(10): 104701.
doi: 10.7498/aps.65.104701
|
[3] |
Wen Wen, Li Hui-Jun, Chen Bing-Yan. Evolution of interference patterns of strongly interacting Fermi gases in a harmonic trap. Acta Physica Sinica,
2012, 61(22): 220306.
doi: 10.7498/aps.61.220306
|
[4] |
Zhu Si-Feng, Liu Fang, Chai Zheng-Yi, Qin Yu-Tao, Wu Jian-She. Simple harmonic oscillator immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network. Acta Physica Sinica,
2012, 61(9): 096401.
doi: 10.7498/aps.61.096401
|
[5] |
Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of linear harmonic oscillator subjected to simple harmonic force with frequency fluctuation. Acta Physica Sinica,
2012, 61(8): 080502.
doi: 10.7498/aps.61.080502
|
[6] |
Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica,
2012, 61(1): 014208.
doi: 10.7498/aps.61.014208
|
[7] |
Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin. Dynamical evolution for time-dependent qscillators. Acta Physica Sinica,
2008, 57(11): 6736-6740.
doi: 10.7498/aps.57.6736
|
[8] |
Cao Peng-Fei, Cheng Lin, Zhang Xiao-Ping. Vectorial Hopkins formulation depending on angles of off-axis illumination. Acta Physica Sinica,
2008, 57(11): 6946-6954.
doi: 10.7498/aps.57.6946
|
[9] |
Bai Zhan-Wu, Song Yan-Li. The dynamical resonance of a harmonic oscillator coupled to a heat bath with harmonic velocity noise and harmonic noise. Acta Physica Sinica,
2007, 56(11): 6220-6223.
doi: 10.7498/aps.56.6220
|
[10] |
Xu Xiu-Wei, Ren Ting-Qi, Liu Shu-Yan, Dong Yong-Mian, Zhao Ji-De. General solution for multi-dimensional coupled and forced quantum oscillator. Acta Physica Sinica,
2006, 55(2): 535-538.
doi: 10.7498/aps.55.535
|
[11] |
Zheng Yi, Yang Xin-E. Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states. Acta Physica Sinica,
2005, 54(2): 511-516.
doi: 10.7498/aps.54.511
|
[12] |
Huang Bo-Wen. A time-dependent damped harmonic oscillator with a force quadratic in velocity. Acta Physica Sinica,
2003, 52(2): 271-275.
doi: 10.7498/aps.52.271
|
[13] |
LI BO-ZANG, LI LING. RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica,
2001, 50(9): 1654-1660.
doi: 10.7498/aps.50.1654
|
[14] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE. EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica,
1999, 48(9): 1601-1604.
doi: 10.7498/aps.48.1601
|
[15] |
YU ZHAO-XIAN, WANG JI-SUO, LIU YE-HOU. HIGHER POWER SQUEEZING AND ANTIBUNCHING EFFECTS FOR GENERALIZED ODD AND EVEN COHERENT STATES OF A NON HARMONIC OSCILLATOR. Acta Physica Sinica,
1997, 46(9): 1693-1698.
doi: 10.7498/aps.46.1693
|
[16] |
NI ZHI-XIANG. SUPERPOSITION OF GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica,
1997, 46(9): 1687-1692.
doi: 10.7498/aps.46.1687
|
[17] |
XU ZI-WEN. EVEN AND ODD GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica,
1996, 45(11): 1807-1811.
doi: 10.7498/aps.45.1807
|
[18] |
Li Jin-Hui, Zeng Gao-Jian. . Acta Physica Sinica,
1995, 44(3): 337-344.
doi: 10.7498/aps.44.337
|
[19] |
CHEN WEI, CHANG ZHE, GUO HAN-YING. CLASSICAL q-DEFORMED HARMONIC OSCILLATORS AND THEIR ? QUANTIZATION. Acta Physica Sinica,
1991, 40(3): 337-344.
doi: 10.7498/aps.40.337
|
[20] |
PENG HUAN-WU. QUANTUM MECHANICAL TREATMENT OF A DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica,
1980, 29(8): 1084-1089.
doi: 10.7498/aps.29.1084
|