[1] |
Pei Yi-Tong, Wang Jin-Kun, Guo Bo-Ling, Liu Wu-Ming. Initial value problem of nonlinear KdV-Schrödinger system. Acta Physica Sinica,
2023, 72(10): 100201.
doi: 10.7498/aps.72.20230241
|
[2] |
Taogetusang, Yi Li-Na. New complexion two-soliton solutions of a class of nonlinear evolution equation. Acta Physica Sinica,
2015, 64(2): 020201.
doi: 10.7498/aps.64.020201
|
[3] |
Wu Qin-Kuan. Variational iteration solution method of soliton for a class of nonlinear disturbed Burgers equation. Acta Physica Sinica,
2012, 61(2): 020203.
doi: 10.7498/aps.61.020203
|
[4] |
Mo Jia-Qi. The variational iteration solution method for a classof nonlinear disturbed evolution equations. Acta Physica Sinica,
2011, 60(2): 020202.
doi: 10.7498/aps.60.020202
|
[5] |
Qian Cun, Wang Liang-Liang, Zhang Jie-Fang. Solitons of nonlinear Schrödinger equation withvariable-coefficients and interaction. Acta Physica Sinica,
2011, 60(6): 064214.
doi: 10.7498/aps.60.064214
|
[6] |
Cheng Xue-Ping, Lin Ji, Han Ping. Direct perturbation method applied to three-dimensional nonlinear Schr?dinger equation. Acta Physica Sinica,
2010, 59(10): 6752-6756.
doi: 10.7498/aps.59.6752
|
[7] |
Mo Jia-Qi, Chen Xian-Feng. Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation. Acta Physica Sinica,
2010, 59(3): 1403-1408.
doi: 10.7498/aps.59.1403
|
[8] |
Shi Lan-Fang, Mo Jia-Qi. Soliton-like homotopic approximate analytic solution for a class of disturbed nonlinear evolution equation. Acta Physica Sinica,
2009, 58(12): 8123-8126.
doi: 10.7498/aps.58.8123
|
[9] |
Zheng Lian-Cun, Feng Zhi-Feng, Zhang Xin-Xin. Approximate analytical solutions for a class of nonlinear differential equations. Acta Physica Sinica,
2007, 56(3): 1549-1554.
doi: 10.7498/aps.56.1549
|
[10] |
Luo Xiang-Yi, Liu Xue-Shen, Ding Pei-Zhu. Dynamic properties and drifting of the solution pattern of cubic nonlinear Schr?dinger equation with varying nonlinear parameters. Acta Physica Sinica,
2007, 56(2): 604-610.
doi: 10.7498/aps.56.604
|
[11] |
Zong Feng-De, Dai Chao-Qing, Yang Qin, Zhang Jie-Fang. Soliton solutions for variable coefficient nonlinear Schr?dinger equation for optical fiber and their application. Acta Physica Sinica,
2006, 55(8): 3805-3812.
doi: 10.7498/aps.55.3805
|
[12] |
Pu Li-Chun, Lin Zong-Bing, Zhang Xue-Feng, Wang Ben-Ju, Jiang Yi, Yan Tian-Yan. Exact solutions of nonlinear Shr?dinger equations. Acta Physica Sinica,
2005, 54(10): 4472-4477.
doi: 10.7498/aps.54.4472
|
[13] |
Shen Shou-Feng, Pan Zu-Liang, Zhang Jun, Ye Cai-Er. The envelope solutions to the coupled nonlinear Schr?dinger equation of Manakov type─with Jacobi elliptic functions. Acta Physica Sinica,
2004, 53(7): 2056-2059.
doi: 10.7498/aps.53.2056
|
[14] |
Yin Jiu-Li, Tian Li-Xin. Compacton solutions and floating compacton solutions of one type of nonlinear equations. Acta Physica Sinica,
2004, 53(9): 2821-2827.
doi: 10.7498/aps.53.2821
|
[15] |
Li Xiang-Zheng, Zhang Jin-Liang, Wang Yue-Ming, Wang Ming-Liang. Envelope solutions to nonlinear Schr?dinger equation. Acta Physica Sinica,
2004, 53(12): 4045-4051.
doi: 10.7498/aps.53.4045
|
[16] |
Liu Shi-Kuo, Fu Zun-Tao, Liu Shi-Da, Zhao Qiang. . Acta Physica Sinica,
2002, 51(1): 10-14.
doi: 10.7498/aps.51.10
|
[17] |
LIU CHUN-PING. THE SOLITON SOLUTIONS FOR A CLASS OF NONLINEAR COUPLED EQUATIONS. Acta Physica Sinica,
2000, 49(10): 1904-1908.
doi: 10.7498/aps.49.1904
|
[18] |
DUAN YI-SHI, YU ZHONG-YUAN, WU ZHEN-SEN. SMALL AMPLITUDE SOLITON SOLUTIONS OF THE COUPLED NONLINEAR SCHR?DINGER EQUATIONS IN BIREFRINGENCE OPTICAL FIBER. Acta Physica Sinica,
1997, 46(12): 2359-2362.
doi: 10.7498/aps.46.2359
|
[19] |
LIU ZHONG-ZHU, HUANG NIAN-NING. SOLITON SOLUTIONS OF THE GENERALIZED NONLINEAR SCHR?DINGER EQUATION WITH HIGHER-ORDER CORRECTIONS BY THE DIRECT METHOD OF HIROTA. Acta Physica Sinica,
1991, 40(1): 1-7.
doi: 10.7498/aps.40.1
|
[20] |
ZHOU YU-KUI, YUN GUO-HONG. A STUDY ON THE EIGENSTATES OF QUANTUM NONLINEAR SCHR?DINGER MODEL WITH GENERAL SUPERMATRICES. Acta Physica Sinica,
1989, 38(4): 648-652.
doi: 10.7498/aps.38.648
|