[1] |
Lu Man-Xin, Deng Wen-Ji. Topological invariants and edge states in one-dimensional two-tile lattices. Acta Physica Sinica,
2019, 68(12): 120301.
doi: 10.7498/aps.68.20190214
|
[2] |
Song Wen-Hua, Wang Ning, Gao Da-Zhi, Wang Hao-Zhong, Qu Ke. Concept of waveguide invariant spectrum and algorithm for its extraction. Acta Physica Sinica,
2017, 66(11): 114301.
doi: 10.7498/aps.66.114301
|
[3] |
Ding Qi, Hao Ai-Jing. Differential invariants for CDG equation and coupled KDV-MKDV equations. Acta Physica Sinica,
2014, 63(11): 110503.
doi: 10.7498/aps.63.110503
|
[4] |
Lou Zhi-Mei. Approximate Lie symmetries and approximate invariants of the orbit differential equation for perturbed Kepler system. Acta Physica Sinica,
2010, 59(10): 6764-6769.
doi: 10.7498/aps.59.6764
|
[5] |
Guo Mei-Yu, Gao Jie. Differential invariants and group classification of variable coefficient generalized Gardner equation. Acta Physica Sinica,
2009, 58(10): 6686-6691.
doi: 10.7498/aps.58.6686
|
[6] |
Mei Feng-Xiang, Cai Jian-Le. Integral invariants of a generalized Birkhoff system. Acta Physica Sinica,
2008, 57(8): 4657-4659.
doi: 10.7498/aps.57.4657
|
[7] |
Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li. Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica,
2007, 56(6): 3043-3049.
doi: 10.7498/aps.56.3043
|
[8] |
Zhang Yi. A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3833-3837.
doi: 10.7498/aps.55.3833
|
[9] |
Ma Zhong-Qi, Xu Bo-Wei. Exact quantization rule and the invariant. Acta Physica Sinica,
2006, 55(4): 1571-1579.
doi: 10.7498/aps.55.1571
|
[10] |
Luo Shao-Kai, Lu Yi-Bing, Zhou Qiang, Wang Ying-De, Oyang Shi. . Acta Physica Sinica,
2002, 51(9): 1913-1917.
doi: 10.7498/aps.51.1913
|
[11] |
Zhang Yi. . Acta Physica Sinica,
2002, 51(8): 1666-1670.
doi: 10.7498/aps.51.1666
|
[12] |
Zhang Yi. . Acta Physica Sinica,
2002, 51(11): 2417-2422.
doi: 10.7498/aps.51.2417
|
[13] |
SHEN JIAN-QI, ZHU HONG-YI, LI JUN. EXACT SOLUTIONS FOR THE INTERACTION BETWEEN NEUTRON SPIN AND GRAVITATION BY USING INVARIANT THEORY. Acta Physica Sinica,
2001, 50(10): 1884-1887.
doi: 10.7498/aps.50.1884
|
[14] |
Shao Chang-Gui, Pan Gui-Jun, Shao Liang, Chen Zhong-Qiu, Xiao Jun-Hua. . Acta Physica Sinica,
2000, 49(4): 619-625.
doi: 10.7498/aps.49.619
|
[15] |
FU JIAN, GAO XIAO-CHUN, XU JING-BO, ZOU XU-BO. INVARIANT-RELATED UNITARY TRANSFORMATION METHOD AND EXACT SOLUTIONS FOR THE QUANTUM DIRAC FIELD IN A TIME-DEPENDENT SPATIALLY HOMOGENEOUS ELECTRIC FIELD. Acta Physica Sinica,
1999, 48(6): 1011-1022.
doi: 10.7498/aps.48.1011
|
[16] |
LI BO-ZANG, ZHANG LING-YUN, ZHANG XIANG-DONG. NOTES ON THE QUANTUM INVARIANT AND ON THE-RELATION BETWEEN IT AND QUANTUM PHASE. Acta Physica Sinica,
1997, 46(11): 2080-2094.
doi: 10.7498/aps.46.2080
|
[17] |
LAI YUN-ZHONG, LIANG JIU-QING. TIME EVOLUTION OF A QUANTUM SYSTEM WITH HAMILTONIAN CONSISTING OF TIME-DEPENDENT LINEAR COMBINATION OF SU(l, 1)AND SU(2) GENERATORS AND THE HERMITIAN INVARIANT OPERATOR. Acta Physica Sinica,
1996, 45(5): 738-746.
doi: 10.7498/aps.45.738
|
[18] |
GAO XIAO-CHUN, GAO JUN, FU JIAN. QUANTUM INVARIANT THEORY AND THE MOTION OF AN ION IN A COMBINED TRAP. Acta Physica Sinica,
1996, 45(6): 912-923.
doi: 10.7498/aps.45.912
|
[19] |
ZHANG YAO-ZHONG. QUANTUM GROUP Uq(SU( 1,1)),UNIVERSAL R MATRIX AND CASIMIR INVARIANT. Acta Physica Sinica,
1994, 43(2): 169-174.
doi: 10.7498/aps.43.169
|
[20] |
SUN HONG-LIN, ZHANG GANG, GUO DONG-YAO. TWO-WAVELENGTH NEIGHBORHOOD PRINCIPLE OF TWO-PHASE STRUCTURE INVARIANTS. Acta Physica Sinica,
1989, 38(5): 824-828.
doi: 10.7498/aps.38.824
|