-
The parameter identification and the projective synchronization between spatiotemporal chaotic systems are studied. The parameter identification law and the adaptive law of undetermined function representing the coupling strength are designed based on Lyapunov theorem. Not only the unknown parameters in responses system are identified, but also projective synchronization between spatiotemporal chaotic systems is realized. The Burgers equation with spatiotemporal chaos behavior is further taken as an example of simulation analysis.
-
Keywords:
- projective synchronization /
- parameter identification /
- spatiotemporal chaos /
- Lyapunov theorem
[1] Yamada T, Fujisaka H 1983 Prog. Theor. Phys. 70 1240
[2] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[3] Fu S H, Pei L J 2010 Acta Phys. Sin. 59 5985 (in Chinese) [付士慧, 裴利军 2010 物理学报 59 5985]
[4] Zhang L P, Jiang H B 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2027
[5] Kocarev L, Parlitz U, Brown R 2000 Phys. Rev. E 61 3716
[6] Chen H K 2005 Chaos, Solitons and Fractals 25 1049
[7] Wu X F, Chen G R, Cai J P 2007 Physica D 229 52
[8] Liu F C, Song J Q 2008 Acta Phys. Sin. 57 4729 (in Chinese) [刘福才, 宋佳秋 2008 物理学报 57 4729]
[9] Lü J H, Zhou T S, Zhou S C 2002 Chaos, Solitons and Fractals 14 529
[10] Brandt S F, Dellen B K, Wessel R 2006 Phys. Rev. Lett. 96 034104
[11] Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]
[12] Li X J, Xu Z Y, Xie Q C, Wang B 2010 Acta Phys. Sin. 59 1532 (in Chinese) [李小娟, 徐振源, 谢青春, 王兵 2010 物理学报 59 1532]
[13] Park J H 2005 Chaos, Solitons and Fractals 25 333
[14] Yassen M T 2006 Phys. Lett. A 350 36
[15] Bowong S 2007 Commun. Nonlinear Sci. Numer. Simulat. 12 976
[16] Huang L L, Feng R P, Wang M 2004 Phys. Lett. A 320 271
[17] Yu W G 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2880
[18] Zhu Q Y, Ma Y W 2000 Comput. Mech. 17 379 (in Chinese) [朱庆勇, 马延文 2000 计算力学学报 17 379]
-
[1] Yamada T, Fujisaka H 1983 Prog. Theor. Phys. 70 1240
[2] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[3] Fu S H, Pei L J 2010 Acta Phys. Sin. 59 5985 (in Chinese) [付士慧, 裴利军 2010 物理学报 59 5985]
[4] Zhang L P, Jiang H B 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2027
[5] Kocarev L, Parlitz U, Brown R 2000 Phys. Rev. E 61 3716
[6] Chen H K 2005 Chaos, Solitons and Fractals 25 1049
[7] Wu X F, Chen G R, Cai J P 2007 Physica D 229 52
[8] Liu F C, Song J Q 2008 Acta Phys. Sin. 57 4729 (in Chinese) [刘福才, 宋佳秋 2008 物理学报 57 4729]
[9] Lü J H, Zhou T S, Zhou S C 2002 Chaos, Solitons and Fractals 14 529
[10] Brandt S F, Dellen B K, Wessel R 2006 Phys. Rev. Lett. 96 034104
[11] Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]
[12] Li X J, Xu Z Y, Xie Q C, Wang B 2010 Acta Phys. Sin. 59 1532 (in Chinese) [李小娟, 徐振源, 谢青春, 王兵 2010 物理学报 59 1532]
[13] Park J H 2005 Chaos, Solitons and Fractals 25 333
[14] Yassen M T 2006 Phys. Lett. A 350 36
[15] Bowong S 2007 Commun. Nonlinear Sci. Numer. Simulat. 12 976
[16] Huang L L, Feng R P, Wang M 2004 Phys. Lett. A 320 271
[17] Yu W G 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2880
[18] Zhu Q Y, Ma Y W 2000 Comput. Mech. 17 379 (in Chinese) [朱庆勇, 马延文 2000 计算力学学报 17 379]
Catalog
Metrics
- Abstract views: 6767
- PDF Downloads: 517
- Cited By: 0