-
Spatiotemporal chaos network synchronization of the laser Maxwell-Bloch equation is studied. The single-mode laser Maxwell-Bloch equation is amended. Then N single-mode laser Maxwell-Bloch equations amended are taken as nodes to constitute a complex network. Considering the fact that the parameters of the spatiotemporal chaos systems taken as nodes may have small deviations from the actual values because of some interference in the network connecting process, the system at the first node is take as a driven system to drive the rest of the N-1 systems in parallel to achieve synchronization. Furthermore, simulation is performed to verify the effectiveness of the method.
-
Keywords:
- complex network /
- spatiotemporal chaos synchronization /
- Lyapunov theorem /
- laser Maxwell-Bloch equation
[1] Haken H 1975 Phys. Lett. A 53 77
[2] Yamada T, Graham R 1980 Phys. Rev. Lett. 45 1322
[3] Gibbs H M, Hopf F A, Kaplan D L, Shoemaker R L 1981 Phys. Rev. Lett. 46 474
[4] Weiss C O, Godone A, Olafsson A 1983 Phys. Lett. A 28 892
[5] Weiss C O, Klische W, Ering P C, Cooper M 1985 Phys. Rev. Lett. 55 405
[6] Sugawara T, Tachikawa M, Tsukamoto T, Shimizu T 1994 Phys. Rev. Lett. 72 3502
[7] Wedekind I, Parlitz U 2002 Phys. Rev. E 66 026218
[8] Kusumoto K, Ohtsubo J 2002 Opt. Lett. 27 989
[9] Wu L, Zhu S Q 2003 Chin. Phys. 12 300
[10] Zhang F, Chu P 2004 Opt. Commun. 237 213
[11] Sun J , Zhu S Q 2005 Commun. Theor. Phys. 43 233
[12] Rogister F, Roy R 2005 Laser Phys. 15 313
[13] Roy R, Thornburg Jr K S 1994 Phys. Rev. Lett. 72 2009
[14] Vicente R, Tang S, Mulet J, Mirasso C R, Liu J M 2006 Phys. Rev. E 73 047201
[15] Aviad Y, Reidler I, Kinze W, Kanter I, Rosenbluh M 2008 Phys. Rev. E 78 025204
[16] Kanter I, Gross N, Klein E, Kopelowitz E, Yoskovits P, Khaykovich L, Kinzel W, Rosenbluh M 2007 Phys. Rev. Lett. 98 154101
[17] Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]
[18] Loose A, Wünsche H J, Henneberger F 2010 Phys. Rev. E 82 035201
[19] Nicolis G, Prigogine I 1977 Self-Organization in Nonequilibrium System (New York: Wiley)
-
[1] Haken H 1975 Phys. Lett. A 53 77
[2] Yamada T, Graham R 1980 Phys. Rev. Lett. 45 1322
[3] Gibbs H M, Hopf F A, Kaplan D L, Shoemaker R L 1981 Phys. Rev. Lett. 46 474
[4] Weiss C O, Godone A, Olafsson A 1983 Phys. Lett. A 28 892
[5] Weiss C O, Klische W, Ering P C, Cooper M 1985 Phys. Rev. Lett. 55 405
[6] Sugawara T, Tachikawa M, Tsukamoto T, Shimizu T 1994 Phys. Rev. Lett. 72 3502
[7] Wedekind I, Parlitz U 2002 Phys. Rev. E 66 026218
[8] Kusumoto K, Ohtsubo J 2002 Opt. Lett. 27 989
[9] Wu L, Zhu S Q 2003 Chin. Phys. 12 300
[10] Zhang F, Chu P 2004 Opt. Commun. 237 213
[11] Sun J , Zhu S Q 2005 Commun. Theor. Phys. 43 233
[12] Rogister F, Roy R 2005 Laser Phys. 15 313
[13] Roy R, Thornburg Jr K S 1994 Phys. Rev. Lett. 72 2009
[14] Vicente R, Tang S, Mulet J, Mirasso C R, Liu J M 2006 Phys. Rev. E 73 047201
[15] Aviad Y, Reidler I, Kinze W, Kanter I, Rosenbluh M 2008 Phys. Rev. E 78 025204
[16] Kanter I, Gross N, Klein E, Kopelowitz E, Yoskovits P, Khaykovich L, Kinzel W, Rosenbluh M 2007 Phys. Rev. Lett. 98 154101
[17] Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]
[18] Loose A, Wünsche H J, Henneberger F 2010 Phys. Rev. E 82 035201
[19] Nicolis G, Prigogine I 1977 Self-Organization in Nonequilibrium System (New York: Wiley)
Catalog
Metrics
- Abstract views: 7135
- PDF Downloads: 557
- Cited By: 0