搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑模控制法实现规则网络的混沌同步

吕翎 李雨珊 韦琳玲 于淼 张檬

引用本文:
Citation:

基于滑模控制法实现规则网络的混沌同步

吕翎, 李雨珊, 韦琳玲, 于淼, 张檬

Chaos synchronization of regular network based on sliding mode control

Li Yu-San, Wei Lin-Ling, Yu Miao, Zhang Meng,
PDF
导出引用
  • 利用滑模控制法研究了规则网络的混沌同步问题. 将针对一个混沌系统进行控制或驱使一个混沌系统同步于另一个 混沌态的滑模控制法推广到由多个混沌系统构成的复杂网络的同步研究中. 设计了网络滑膜面以及控制输入, 并依据稳定性理论分析了它们的有效性. 选取Duffing系统和Coullet系统作为网络节点构成的规则网络为例进行了仿真模拟.
    Sliding mode control method is used to study the synchronization of regular network. The method is extended from the single chaos control or synchronization between two chaotic systems to the synchronization of complex network. The sliding surface of the network and the control input are designed. Furthermore, the effectiveness of the method is analyzed based on the stability theory. The Duffing system and the Coullet system are taken as network nodes of the regular network, and the simulation is made to verify the method.
    • 基金项目: 辽宁省自然科学基金(批准号: 20082147)和辽宁省教育厅创新团队计划(批准号: 2008T108)资助的课题.
    • Funds: Project Supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 20082147), and the Innovative Team Program of Liaoning Educational Committee, China (Grant No. 2008T108).
    [1]

    Naseh M R, Haeri M 2009 Chaos, Solitons and Fractals 39 196

    [2]

    Shtessel Y, Kaveh P, Ashrafi A 2009 Journal of the Franklin Institute 346 872

    [3]

    Qi D L, Yang J, Zhang J L 2010 Chin. Phys. B 19 100506

    [4]

    Yau H T, Wang C C, Hsieh C T, Cho C C 2011 Comput. Math. Appl. 61 1912

    [5]

    Chen D Y, Shen T, Mao X Y 2011 Acta Phys. Sin. 60 050505 (in Chinese) [陈帝伊, 申滔, 马孝义 2011 物理学报 60 050505]

    [6]

    Vasegh N, Khellat F 2009 Chaos, Solitons and Fractals 42 1054

    [7]

    Zribi M, Smaoui N, Salim H 2009 Chaos, Solitons and Fractals 42 3197

    [8]

    Li M, Liu C X 2010 Chin. Phys. B 19 100504

    [9]

    Yu Y, Mi Z Q, Liu X J 2011 Acta Phys. Sin. 60 070509[余洋、米增强、刘兴杰2011物理学报60 070509]

    [10]

    Liu F C, Song J Q 2008 Acta Phys. Sin. 57 4729 (in Chinese) [刘福才, 宋佳秋 2011 物理学报 57 4729]

    [11]

    Li D, Leyva I, Almendral J A, Sendiña-Nadal I, Buldú J M, Havlin S, Boccaletti S 2008 Phys. Rev. Lett. 101 168701

    [12]

    Pisarchik A N, Jaimes-Reátegui R, Sevilla-Escoboza R, Boccaletti S 2009 Phys. Rev. E 79 55202

    [13]

    Batista C A S, Batista A M, de Pontes J C A, Lopes S R, Viana R L 2009 Chaos, Solitons and Fractals 41 2220

    [14]

    Kouvaris N, Provata A, Kugiumtzis D 2010 Phys. Lett. A 374 507

    [15]

    Song Q, Cao J D, Liu F 2010 Phys. Lett. A 374 544

    [16]

    Ji D H, Park J H, Yoo W J, Won S C, Lee S M 2010 Phys. Lett. A 374 1218

    [17]

    Liu T, Zhao J, Hill D J 2009 Chaos, Solitons and Fractals 40 1506

    [18]

    Shang Y, Chen M Y, Kurths J 2009 Phys. Rev. E 80 27201

    [19]

    Lü L, Li G, Guo L, Meng L, Zou J R, Yang M 2010 Chin. Phys. B 19 080507

    [20]

    Liu H, Chen J, Lu J A, Cao M 2010 Physica A 389 1759

    [21]

    Slotine J E, Li W 1991 Applied Nonlinear Control (Englewood Cliffs, New Jersey: Prentice-Hall)

    [22]

    Wembe E T, Yamapi R 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 1439

    [23]

    Wu C W, Chua L O 1996 Int. J. Bifur. Chaos 6 801

  • [1]

    Naseh M R, Haeri M 2009 Chaos, Solitons and Fractals 39 196

    [2]

    Shtessel Y, Kaveh P, Ashrafi A 2009 Journal of the Franklin Institute 346 872

    [3]

    Qi D L, Yang J, Zhang J L 2010 Chin. Phys. B 19 100506

    [4]

    Yau H T, Wang C C, Hsieh C T, Cho C C 2011 Comput. Math. Appl. 61 1912

    [5]

    Chen D Y, Shen T, Mao X Y 2011 Acta Phys. Sin. 60 050505 (in Chinese) [陈帝伊, 申滔, 马孝义 2011 物理学报 60 050505]

    [6]

    Vasegh N, Khellat F 2009 Chaos, Solitons and Fractals 42 1054

    [7]

    Zribi M, Smaoui N, Salim H 2009 Chaos, Solitons and Fractals 42 3197

    [8]

    Li M, Liu C X 2010 Chin. Phys. B 19 100504

    [9]

    Yu Y, Mi Z Q, Liu X J 2011 Acta Phys. Sin. 60 070509[余洋、米增强、刘兴杰2011物理学报60 070509]

    [10]

    Liu F C, Song J Q 2008 Acta Phys. Sin. 57 4729 (in Chinese) [刘福才, 宋佳秋 2011 物理学报 57 4729]

    [11]

    Li D, Leyva I, Almendral J A, Sendiña-Nadal I, Buldú J M, Havlin S, Boccaletti S 2008 Phys. Rev. Lett. 101 168701

    [12]

    Pisarchik A N, Jaimes-Reátegui R, Sevilla-Escoboza R, Boccaletti S 2009 Phys. Rev. E 79 55202

    [13]

    Batista C A S, Batista A M, de Pontes J C A, Lopes S R, Viana R L 2009 Chaos, Solitons and Fractals 41 2220

    [14]

    Kouvaris N, Provata A, Kugiumtzis D 2010 Phys. Lett. A 374 507

    [15]

    Song Q, Cao J D, Liu F 2010 Phys. Lett. A 374 544

    [16]

    Ji D H, Park J H, Yoo W J, Won S C, Lee S M 2010 Phys. Lett. A 374 1218

    [17]

    Liu T, Zhao J, Hill D J 2009 Chaos, Solitons and Fractals 40 1506

    [18]

    Shang Y, Chen M Y, Kurths J 2009 Phys. Rev. E 80 27201

    [19]

    Lü L, Li G, Guo L, Meng L, Zou J R, Yang M 2010 Chin. Phys. B 19 080507

    [20]

    Liu H, Chen J, Lu J A, Cao M 2010 Physica A 389 1759

    [21]

    Slotine J E, Li W 1991 Applied Nonlinear Control (Englewood Cliffs, New Jersey: Prentice-Hall)

    [22]

    Wembe E T, Yamapi R 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 1439

    [23]

    Wu C W, Chua L O 1996 Int. J. Bifur. Chaos 6 801

  • [1] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, 2023, 72(18): 184702. doi: 10.7498/aps.72.20230602
    [2] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [3] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
计量
  • 文章访问数:  5847
  • PDF下载量:  718
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-02
  • 修回日期:  2011-11-22
  • 刊出日期:  2012-06-05

/

返回文章
返回