搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电压型buck-boost变换器的混沌控制

郑连清 彭一

引用本文:
Citation:

电压型buck-boost变换器的混沌控制

郑连清, 彭一

Chaos control of voltage mode controlled buck-boost converter

Zheng Lian-Qing, Peng Yi
PDF
导出引用
  • 由于科学技术发展水平的限制,还无法利用处于混沌态的DC-DC变换器来达成一些期望的目标,所以对于DC-DC变换器中的混沌现象几乎都是抑制它的出现.本文针对工作在断续模式的电压型buck-boost变换器的混沌分岔现象,分别采用两种方法控制系统稳定工作在单周期态.第一种是无源延时反馈控制,它具有动态响应速度快、不改变系统频率的优点,但它在扰动过大时失效.第二种是改进的滑模控制,它具有动态响应特性好、鲁棒性好的优点.仿真结果表明,两种控制方法都能使buck-boost变换器稳定工作在单周期态,达到抑制其进入混沌态的目的.
    Due to the limitation to the development level of modern science and technology, DC-DC (where DC stands for direct current) converters operating in chaotic state cannot be used to achieve some desired goals yet and the chaotic phenomena occurring in DC-DC converters are almost restrained. For DC-DC converter operating in continuous conduction mode (CCM), its characteristic has been widely studied, but DC-DC converter needs to operate in discontinuous conduction mode (DCM) at light load. Because if it always works in CCM, the inductor current will be less than zero when the load is light, which will increase conduction loss and reduce conversion efficiency. Moreover, DCM operation is frequently encountered, since power converters are usually required to operate with loads removed. For buck-boost converter, the obvious oscillation will appear when it works under the condition of varying operating point, so it is difficult to control. Considering the reasons above, the voltage mode controlled buck-boost converter operating in DCM is chosen to be studied to verify the validity of the two control methods presented in this paper. Under a certain condition, chaos and bifurcation will occur in the voltage mode controlled buck-boost converter operating in DCM. Having discussed its chaotic phenomenon, in this paper we present two ways to control the system to operate stably in one-cycle state. The first way is the self-controlling delayed feedback control method. The basic idea of this method is to use the difference between the delayed output signal and the output signal to form a feedback signal, and return it to the control circuit in a form of negative feedback to control the output signal. The simulation results show that the self-controlling delayed feedback control method can make the system which has already entered into chaos operate stably in one-cycle state. Besides, its dynamic response speed is fast and it does not change the system frequency. However, this method fails to work when the disturbance is too large. Therefore, the self-controlling delayed feedback control method is more suitable for small disturbance condition. The second way is the improved sliding mode control method. The basic idea of the sliding mode control is to design a switching function to determine a switching surface which represents a desired system dynamics, then, design a variable structure control law to drive any state to reach the switching surface, therefore, the sliding mode takes place and the system follows the desired dynamics. The simulation results show that the improved sliding mode control method can force the system which has already entered into chaos to operate stably in one-cycle state even when the system encounters large disturbance. In addition, although it is more complicated to design, it has great dynamic response characteristics and excellent robustness. Because the methods presented in this paper do not rely on the buck-boost converter itself, both methods can be used to control other DC-DC converters. When the disturbance is small, the self-controlling delayed feedback control method should be considered first, for it is easier to achieve. When the system encounters large disturbances the sliding mode control method has the priority, because this method is valid while the self-controlling delayed feedback control method may fails under such a condition.
      通信作者: 彭一, 751498430@qq.com
    • 基金项目: 国家自然科学基金(批准号:51577019)和国家111计划(批准号:B08036)资助的课题.
      Corresponding author: Peng Yi, 751498430@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577019), and National 111 Project (Grant No. B08036).
    [1]

    Duran E, Andujar J M, Segura F, Barragan A J 2011Appl. Energy 88 1690

    [2]

    Zumoffen D, Basualdo M 2010Comput. Chem. Eng. 34 643

    [3]

    Tse C K 1994IEEE Trans. Circuits Syst. I 41 16

    [4]

    Nusse H E, Yorke J A 1992Physica D 57 39

    [5]

    Nusse H E, Ott E, Yorke J A 1994Phys. Rev. E 45 707

    [6]

    Lzhikevich E M 2000Int. J. Bifurcat. Chaos 10 1171

    [7]

    Zhao G Z, Qi D L 2001Trans. China Electrotech. Soc. 16 77(in Chinese)[赵光宙, 齐冬莲2001电工技术学报16 77]

    [8]

    Ott E, Grebogi C, York J A 1990Phys. Rev. Lett. 64 1196

    [9]

    Pyragas K 1992Phys. Lett. A 170 421

    [10]

    Pyragas K 1993Phys. Lett. A 180 99

    [11]

    Lu W G, Zhou L W, Luo Q M, Du X 2007Trans. China Electrotech. Soc. 22 98(in Chinese)[卢伟国, 周雒维, 罗全明, 杜雄2007电工技术学报22 98]

    [12]

    Alsing P M, Garielides A 1994Phys. Rev. E 49 1225

    [13]

    Lin C T 1999IEEE Trans. on Neural Networks 10 846

    [14]

    Chen L, Chen G R 1999Int. J. Bifurcat. Chaos 9 757

    [15]

    Patidar V, Pareek N K, Sud K K 2002Phys. Lett. A 304 121

    [16]

    Jia M M, Zhang G S, Niu H 2013Acta Phys. Sin. 62 130503(in Chinese)[贾美美, 张国山, 牛弘2013物理学报62 130503]

    [17]

    Zhang F Y, Hu W, Chen X B, Chen H, Tang X M 2015Acta Phys. Sin. 64 048401(in Chinese)[张方樱, 胡维, 陈新兵, 陈虹, 唐雄民2015物理学报64 048401]

    [18]

    Wei Q L, Song R Z, Sun Q Y, Xiao W D 2015Chin. Phys. B 24 090504

    [19]

    Maity S 2013IEEE Trans. Circuits I 60 1657

    [20]

    Chen Q, Nan Y R, Zheng H H, Ren X M 2015Chin. Phys. B 24 110504

    [21]

    Ouyang C L, Yan Y G, Zhang G B 2002Trans. China Electrotech. Soc. 17 53(in Chinese)[欧阳长莲, 严仰光, 章国宝2002电工技术学报17 53]

    [22]

    Erickson W, Maksimovic D 2001Fundamentals of Power Electronics (2nd Ed.) (New York:Kluwer) pp107-108

    [23]

    Wu Y, Huang P Y G, Zhang L, Zhou L W 2015Proc. CSEE 35 1740(in Chinese)[吴宇, 皇甫宜耿, 张琳, 周雒维2015中国电机工程学报35 1740]

    [24]

    Xie L L, Ren X G, Zhuo H Z, Wei J Q 2011J. Electr. Eng. Technol. 6 519

    [25]

    Lin H C, Chang T Y 20077th International Conference on Power Electronics and Drive Systems Taiwan, China 2007 p373

    [26]

    Tan S C, Lai Y M, Cheung M K H, Tse C K 2005IEEE Trans. Power Electron 20 425

  • [1]

    Duran E, Andujar J M, Segura F, Barragan A J 2011Appl. Energy 88 1690

    [2]

    Zumoffen D, Basualdo M 2010Comput. Chem. Eng. 34 643

    [3]

    Tse C K 1994IEEE Trans. Circuits Syst. I 41 16

    [4]

    Nusse H E, Yorke J A 1992Physica D 57 39

    [5]

    Nusse H E, Ott E, Yorke J A 1994Phys. Rev. E 45 707

    [6]

    Lzhikevich E M 2000Int. J. Bifurcat. Chaos 10 1171

    [7]

    Zhao G Z, Qi D L 2001Trans. China Electrotech. Soc. 16 77(in Chinese)[赵光宙, 齐冬莲2001电工技术学报16 77]

    [8]

    Ott E, Grebogi C, York J A 1990Phys. Rev. Lett. 64 1196

    [9]

    Pyragas K 1992Phys. Lett. A 170 421

    [10]

    Pyragas K 1993Phys. Lett. A 180 99

    [11]

    Lu W G, Zhou L W, Luo Q M, Du X 2007Trans. China Electrotech. Soc. 22 98(in Chinese)[卢伟国, 周雒维, 罗全明, 杜雄2007电工技术学报22 98]

    [12]

    Alsing P M, Garielides A 1994Phys. Rev. E 49 1225

    [13]

    Lin C T 1999IEEE Trans. on Neural Networks 10 846

    [14]

    Chen L, Chen G R 1999Int. J. Bifurcat. Chaos 9 757

    [15]

    Patidar V, Pareek N K, Sud K K 2002Phys. Lett. A 304 121

    [16]

    Jia M M, Zhang G S, Niu H 2013Acta Phys. Sin. 62 130503(in Chinese)[贾美美, 张国山, 牛弘2013物理学报62 130503]

    [17]

    Zhang F Y, Hu W, Chen X B, Chen H, Tang X M 2015Acta Phys. Sin. 64 048401(in Chinese)[张方樱, 胡维, 陈新兵, 陈虹, 唐雄民2015物理学报64 048401]

    [18]

    Wei Q L, Song R Z, Sun Q Y, Xiao W D 2015Chin. Phys. B 24 090504

    [19]

    Maity S 2013IEEE Trans. Circuits I 60 1657

    [20]

    Chen Q, Nan Y R, Zheng H H, Ren X M 2015Chin. Phys. B 24 110504

    [21]

    Ouyang C L, Yan Y G, Zhang G B 2002Trans. China Electrotech. Soc. 17 53(in Chinese)[欧阳长莲, 严仰光, 章国宝2002电工技术学报17 53]

    [22]

    Erickson W, Maksimovic D 2001Fundamentals of Power Electronics (2nd Ed.) (New York:Kluwer) pp107-108

    [23]

    Wu Y, Huang P Y G, Zhang L, Zhou L W 2015Proc. CSEE 35 1740(in Chinese)[吴宇, 皇甫宜耿, 张琳, 周雒维2015中国电机工程学报35 1740]

    [24]

    Xie L L, Ren X G, Zhuo H Z, Wei J Q 2011J. Electr. Eng. Technol. 6 519

    [25]

    Lin H C, Chang T Y 20077th International Conference on Power Electronics and Drive Systems Taiwan, China 2007 p373

    [26]

    Tan S C, Lai Y M, Cheung M K H, Tse C K 2005IEEE Trans. Power Electron 20 425

  • [1] 张方樱, 胡维, 陈新兵, 陈虹, 唐雄民. 基于状态关联性的Boost变换器混沌与反混沌控制. 物理学报, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [2] 薛楷嘉, 王从庆. 基于在线误差修正自适应SVR的非线性不确定分数阶混沌系统滑模控制. 物理学报, 2015, 64(7): 070502. doi: 10.7498/aps.64.070502
    [3] 潘光, 魏静. 一种分数阶混沌系统同步的自适应滑模控制器设计. 物理学报, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] 陈强, 南余荣, 邢科新. 基于扩张状态观测器的永磁同步电机混沌系统自适应滑模控制. 物理学报, 2014, 63(22): 220506. doi: 10.7498/aps.63.220506
    [5] 王曦, 王渝红, 李兴源, 苗淼. 考虑模型不确定性和时延的静止无功补偿器自适应滑膜控制器设计. 物理学报, 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [6] 李冠林, 李春阳, 陈希有, 张效伟. 基于共振参数微扰法的SEPIC变换器的混沌控制. 物理学报, 2013, 62(21): 210505. doi: 10.7498/aps.62.210505
    [7] 贾美美, 张国山, 牛弘. 基于改善关联性Buck变换器的混沌控制. 物理学报, 2013, 62(13): 130503. doi: 10.7498/aps.62.130503
    [8] 路永坤. 受扰统一混沌系统的主动自适应模糊积分滑模控制 . 物理学报, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [9] 吕翎, 李雨珊, 韦琳玲, 于淼, 张檬. 基于滑模控制法实现规则网络的混沌同步. 物理学报, 2012, 61(12): 120504. doi: 10.7498/aps.61.120504
    [10] 曹鹤飞, 张若洵. 基于滑模控制的分数阶混沌系统的自适应同步. 物理学报, 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [11] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [12] 郭会军, 刘丁, 赵光宙. 受扰统一混沌系统基于RBF网络的主动滑模控制. 物理学报, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [13] 刘丁, 闫晓妹. 基于滑模控制实现分数阶混沌系统的投影同步. 物理学报, 2009, 58(6): 3747-3752. doi: 10.7498/aps.58.3747
    [14] 刘福才, 宋佳秋. 基于主动滑模控制的一类混沌系统异结构反同步. 物理学报, 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [15] 卢伟国, 周雒维, 罗全明. 电压模式BUCK变换器输出延迟反馈混沌控制. 物理学报, 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [16] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化. 物理学报, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [17] 张胜海, 杨 华, 钱兴中. 一种控制掺铒光纤激光器超混沌的方法——非线性延时反馈参数调制法. 物理学报, 2004, 53(11): 3706-3709. doi: 10.7498/aps.53.3706
    [18] 周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟锋. 参数共振微扰法在Boost变换器混沌控制中的实现及其优化. 物理学报, 2004, 53(11): 3676-3683. doi: 10.7498/aps.53.3676
    [19] 罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群. DC-DC buck变换器的分岔行为及混沌控制研究. 物理学报, 2003, 52(1): 12-17. doi: 10.7498/aps.52.12
    [20] 邹艳丽, 罗晓曙, 方锦清, 汪秉宏. 脉冲电压微分反馈法控制buck功率变换器中的混沌. 物理学报, 2003, 52(12): 2978-2984. doi: 10.7498/aps.52.2978
计量
  • 文章访问数:  3532
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-19
  • 修回日期:  2016-08-20
  • 刊出日期:  2016-11-05

电压型buck-boost变换器的混沌控制

  • 1. 重庆大学电气工程学院, 重庆 400044
  • 通信作者: 彭一, 751498430@qq.com
    基金项目: 国家自然科学基金(批准号:51577019)和国家111计划(批准号:B08036)资助的课题.

摘要: 由于科学技术发展水平的限制,还无法利用处于混沌态的DC-DC变换器来达成一些期望的目标,所以对于DC-DC变换器中的混沌现象几乎都是抑制它的出现.本文针对工作在断续模式的电压型buck-boost变换器的混沌分岔现象,分别采用两种方法控制系统稳定工作在单周期态.第一种是无源延时反馈控制,它具有动态响应速度快、不改变系统频率的优点,但它在扰动过大时失效.第二种是改进的滑模控制,它具有动态响应特性好、鲁棒性好的优点.仿真结果表明,两种控制方法都能使buck-boost变换器稳定工作在单周期态,达到抑制其进入混沌态的目的.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回