Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anti-control and circuit implementation of discrete-time systems under limited regional conditions

Wang Fang Zhang Xin-Zheng Shen Chao-Wen Yu Si-Min

Citation:

Anti-control and circuit implementation of discrete-time systems under limited regional conditions

Wang Fang, Zhang Xin-Zheng, Shen Chao-Wen, Yu Si-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the Chen-Lai and Wang-Chen algorithm , the modular functions are both defined in (-∞,+∞). A modular function, however, in the implementation of electronic circuit, is more reasonable in line with the actual situation if it is defined in a finite region. We take for example the anti-control of a discrete time system, of which the modular function is sine function on the basis of a finite region. And in the sense of Li-Yorke, the chaotic sufficient condition and the rigorous theory proof are provided. As a result, ranges of specific circuit parameters can be determined by both the sufficient conditions resulting from the theorem, and a finite region defined by the device, or the constraint conditions of a dynamic range. Therefore, this provides a fundamental basis for the circuit design and its technology. Based on this method, the anti-control circuit of the discrete time system is designed, of which the modular function is sine function in a finite region. And the experimental results are given for confirming the feasibility of the method. The method presented in this paper can also be applied to the circuit implementation and the anti-control of a discrete time system, of which the modular function is other nonlinear function.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172023, 60871025,61074185), the Natural Science Foundation of Guangdong Province (Grant Nos. 8151009001000060, S2011010001018), and the Specialized Research Foundation of Doctoral Subject Point of Education Ministry (Grant No. 20114420110003), the Research Project in Guangdong Province (Grant No. 2010B090301042), and the Guangzhou Municipal Science and Technology projects (Grant Nos. 2011J4300079).
    [1]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [2]

    Chen G, Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (World Scientific Pub. Co., Singapore) p26

    [3]

    Chen G 1999 Controlling chaos and Bifurcations in Engineering Systems (CRC Press, USA) p38

    [4]

    Chen G, Yu X 2003 Chaos Control:Theory and Applications (Springer-Verlag, Berlin) p79

    [5]

    Schiff S J, Jerger K, Duong D H, Chang T, Spano M L, Ditto W L 1994 Nature 363 411

    [6]

    Chen G, Lai D 1996 Int. J. of Bifurc. Chaos 6 1341

    [7]

    Chen G, Lai D 1997 Proc. IEEE Conf. Deci. control 1997 SanDiego, CA, Dec 10-12 ,367

    [8]

    Chen G, Lai D 1998 Int. J. of Bifur. Chaos 8 1585

    [9]

    Oseledec V I 1968 Trans. Moscow Math. Soc. 19 197

    [10]

    Devaney R L 1987 An Introduction to Chaotic Dynamical Systems (New York: Addison-Wesley) 10-15

    [11]

    Li T Y, Yorke J A 1975 Ameri. Math. Monthly 82 481

    [12]

    Wang X F, Chen G R 2000IEEE Trans. on Circcuits Syst. I 47 410

    [13]

    Chen G R, Wang X F 2006 Chaotification of Dynamical Systems-Theory, Method and Applications (Shanghai: Shanghai Jiaotong University Press) p18-21 (in Chinese) [陈关荣, 汪小帆 2006 动力系统的混沌化—理论、方法与应用 (上海: 上海交通大学出版社) 第18—31页]

    [14]

    Chen J F, Cheng L, Liu Y, Peng J H 2003 Acta Phys. Sin. 52 3290 (in Chinese) [陈菊芳, 程丽, 刘颖, 彭建华 2003 物理学报 52 3290]

    [15]

    Zhang X M, Wang H, Peng J H 2010 J. Shenzhen Univ. Sci. Engi. 27 317 ( in Chinese) [张晓明, 王赫, 彭建华 2010 深圳大学学报理工版 27 317]

    [16]

    Chen J F, Zhang R Y, Peng J H 2003 Acta Phys. Sin. 52 1589 (in Chinese) [陈菊芳, 张入元, 彭建华 2003 物理学报 52 1589]

    [17]

    Feng C W, Cai L, Kang Q ,Peng W D,Bai P,Wang J F 2011 Acta Phys. Sin. 60 110502 (in Chinese) [冯朝文, 蔡理, 康强, 彭卫东, 柏鹏, 王甲富 2011 物理学报 60 110502]

    [18]

    Wang X M, Li Y F 2010 J. Jilin Univ. (Infor. Sci. Edi.) 29 36 (in Chinese) [王学明, 李原福 吉林大学学报(信息科学版) 29 36]

    [19]

    Chen X, Qiu S S 2010Acta Phys. Sin. 59 7630 (in Chinese) [陈旭, 丘水生 2010 物理学报 59 7630]

    [20]

    Marotto F R 1978 J. Math. Anal. Appl. 63 199

  • [1]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [2]

    Chen G, Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (World Scientific Pub. Co., Singapore) p26

    [3]

    Chen G 1999 Controlling chaos and Bifurcations in Engineering Systems (CRC Press, USA) p38

    [4]

    Chen G, Yu X 2003 Chaos Control:Theory and Applications (Springer-Verlag, Berlin) p79

    [5]

    Schiff S J, Jerger K, Duong D H, Chang T, Spano M L, Ditto W L 1994 Nature 363 411

    [6]

    Chen G, Lai D 1996 Int. J. of Bifurc. Chaos 6 1341

    [7]

    Chen G, Lai D 1997 Proc. IEEE Conf. Deci. control 1997 SanDiego, CA, Dec 10-12 ,367

    [8]

    Chen G, Lai D 1998 Int. J. of Bifur. Chaos 8 1585

    [9]

    Oseledec V I 1968 Trans. Moscow Math. Soc. 19 197

    [10]

    Devaney R L 1987 An Introduction to Chaotic Dynamical Systems (New York: Addison-Wesley) 10-15

    [11]

    Li T Y, Yorke J A 1975 Ameri. Math. Monthly 82 481

    [12]

    Wang X F, Chen G R 2000IEEE Trans. on Circcuits Syst. I 47 410

    [13]

    Chen G R, Wang X F 2006 Chaotification of Dynamical Systems-Theory, Method and Applications (Shanghai: Shanghai Jiaotong University Press) p18-21 (in Chinese) [陈关荣, 汪小帆 2006 动力系统的混沌化—理论、方法与应用 (上海: 上海交通大学出版社) 第18—31页]

    [14]

    Chen J F, Cheng L, Liu Y, Peng J H 2003 Acta Phys. Sin. 52 3290 (in Chinese) [陈菊芳, 程丽, 刘颖, 彭建华 2003 物理学报 52 3290]

    [15]

    Zhang X M, Wang H, Peng J H 2010 J. Shenzhen Univ. Sci. Engi. 27 317 ( in Chinese) [张晓明, 王赫, 彭建华 2010 深圳大学学报理工版 27 317]

    [16]

    Chen J F, Zhang R Y, Peng J H 2003 Acta Phys. Sin. 52 1589 (in Chinese) [陈菊芳, 张入元, 彭建华 2003 物理学报 52 1589]

    [17]

    Feng C W, Cai L, Kang Q ,Peng W D,Bai P,Wang J F 2011 Acta Phys. Sin. 60 110502 (in Chinese) [冯朝文, 蔡理, 康强, 彭卫东, 柏鹏, 王甲富 2011 物理学报 60 110502]

    [18]

    Wang X M, Li Y F 2010 J. Jilin Univ. (Infor. Sci. Edi.) 29 36 (in Chinese) [王学明, 李原福 吉林大学学报(信息科学版) 29 36]

    [19]

    Chen X, Qiu S S 2010Acta Phys. Sin. 59 7630 (in Chinese) [陈旭, 丘水生 2010 物理学报 59 7630]

    [20]

    Marotto F R 1978 J. Math. Anal. Appl. 63 199

  • [1] Qin Ming-Hong, Lai Qiang, Wu Yong-Hong. Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors. Acta Physica Sinica, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [2] Luo Ming-Wei, Luo Xiao-Hua, Li Hua-Qing. A family of four-dimensional multi-wing chaotic system and its circuit implementation. Acta Physica Sinica, 2013, 62(2): 020512. doi: 10.7498/aps.62.020512
    [3] Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [4] Li Chun-Lai, Yu Si-Min, Luo Xiao-Shu. A new chaotic system and its implementation. Acta Physica Sinica, 2012, 61(11): 110502. doi: 10.7498/aps.61.110502
    [5] Feng Chao-Wen, Cai Li, Yang Xiao-Kuo, Kang Qiang, Peng Wei-Dong, Bai Peng. Research of one-dimensional discrete chaotic system constructed by the hybrid circuits of single-electron transistor and metal oxide semiconductor. Acta Physica Sinica, 2012, 61(8): 080503. doi: 10.7498/aps.61.080503
    [6] Zhou Xiao-Yong. A novel chaotic system and its circuit simulation. Acta Physica Sinica, 2012, 61(3): 030504. doi: 10.7498/aps.61.030504
    [7] Feng Chao-Wen, Cai Li, Kang Qiang, Peng Wei-Dong, Bai Peng, Wang Jia-Fu. Realization of the discrete chaotic system based on SET-MOS circuits. Acta Physica Sinica, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [8] Liu Zhong, Wu Hua-Gan, Bao Bo-Cheng. Scroll number and distribution control of attractor: system design and circuit realization. Acta Physica Sinica, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [9] Chen Xu, Qiu Shui-Sheng. Precise planement of all Lyapunov exponents for discrete-time dynamical systems. Acta Physica Sinica, 2010, 59(11): 7630-7634. doi: 10.7498/aps.59.7630
    [10] Tang Liang-Rui, Li Jing, Fan Bing. A new four-dimensional hyperchaotic system and its circuit simulation. Acta Physica Sinica, 2009, 58(3): 1446-1455. doi: 10.7498/aps.58.1446
    [11] Li Chun-Biao, Chen Su, Zhu Huan-Qiang. Circuit implementation and synchronization of an improved system with invariable Lyapunov exponent spectrum. Acta Physica Sinica, 2009, 58(4): 2255-2265. doi: 10.7498/aps.58.2255
    [12] Cang Shi-Jian, Chen Zeng-Qiang, Yuan Zhu-Zhi. Analysis and circuit implementation of a new four-dimensional non-autonomous hyper-chaotic system. Acta Physica Sinica, 2008, 57(3): 1493-1501. doi: 10.7498/aps.57.1493
    [13] Liu Yang-Zheng. A new hyperchaotic Lü system and its circuit realization. Acta Physica Sinica, 2008, 57(3): 1439-1443. doi: 10.7498/aps.57.1439
    [14] Liu Su-Hua, Tang Jia-Shi. Anti-control of Hopf bifurcation at zero equilibrium of 4D Qi system. Acta Physica Sinica, 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162
    [15] Zhang Yu-Hui, Qi Guo-Yuan, Liu Wen-Liang, Yan Yan. Theoretical analysis and circuit implementation of a new four dimensional chaotic system. Acta Physica Sinica, 2006, 55(7): 3307-3314. doi: 10.7498/aps.55.3307
    [16] Wang Guang-Yi, Qiu Shui-Sheng, Xu Zhi-Yi. A new three-dimensional quadratic chaotic system and its circuitry implementation. Acta Physica Sinica, 2006, 55(7): 3295-3301. doi: 10.7498/aps.55.3295
    [17] Wang Fan-Zhen, Qi Guo-Yuan, Chen Zeng-Qiang, Zhang Yu-Hui, Yuan Zhu-Zhi. Analysis, circuit implementation and synchronization of a new three-dimensional chaotic system. Acta Physica Sinica, 2006, 55(8): 4005-4012. doi: 10.7498/aps.55.4005
    [18] Li Shi-Hua, Cai Hai-Xing. Research on circuitry realization and synchronization of Chen chaotic systems. Acta Physica Sinica, 2004, 53(6): 1687-1693. doi: 10.7498/aps.53.1687
    [19] Tao Jian-Wu, Shi Yao-Wu, Chang Wen-Xiu. Chaotic anti-control of a port control Hamilton system. Acta Physica Sinica, 2004, 53(6): 1682-1686. doi: 10.7498/aps.53.1682
    [20] Guan Xin-Ping, Fan Zheng-Ping, Zhang Qun-Liang, Wang Yi-Qun. . Acta Physica Sinica, 2002, 51(10): 2216-2220. doi: 10.7498/aps.51.2216
Metrics
  • Abstract views:  6631
  • PDF Downloads:  398
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2012
  • Accepted Date:  22 March 2012

/

返回文章
返回