-
Standing wave of laser light acts as an array of lenses to focus the moving atoms in atom lithography. The position between standing wave and substrate plays an important role in determining the quality of depositional nanometer lines. Using the rule of Gaussian beam, a method of accurately identifying the position of standing wave of laser light is reported. By adjusting accurately the displacement stage which carries the beam focus lens and reflective mirror, the laser beam is subsequently shielded by depositional substrate. Signal of photoelectric detector is changed because of shielding the standing wave, so we can convert the displacement of standing wave into electrical signal. Positioning the standing wave against substrate is achieved by using the value of waist diameter of standing wave of laser light. Theoretical model is developed according to the experimental process. The result of numerical computation coincides well with the experimental record. This method realizes accurately positioning standing wave of laser light against substrate, and it provides the experimental basic for deeply studying the influence of the distance between standing wave and substrate on the quality of depositional nanometer lines.
-
Keywords:
- atom lithography /
- atom deposition /
- nanometer grating /
- standing wave of laser light
[1] Ma Y, Zhang B W, Zheng C L, Ma S S, Li F S, Wang Z S, Li T B 2007 Acta Phy. Sin. 56 1365 (in Chinese) [马艳, 张宝武, 郑春兰, 马姗姗, 李佛生, 王占山, 李同保 2007 物理学报 56 1365]
[2] Li T B 2005 SMT 32 8 (in Chinese) [李同保 2005 上海计量测试 32 8]
[3] Timp G, Behringer R E, Tennant D M, Cunningham J E, Prentiss M, Berggren K K 1992 Phys. Rev. Lett. 69 1636
[4] Mcclelland J J, Scholten R E, Palm E C, Celotta R J 1993 Science 262 877
[5] Drodofsky U, Stuhler J, Brezger B, Schulze T, Drewsen M, Pfau T, Mlynek J 1997 Microelectron. Eng. 35 285
[6] Mcgowan R W, Giltner D MLee S A 1995 Opt. Lett. 20 2535
[7] Ohmukai S U, Watanabe M 2003 Appl. Phys. B 77 415
[8] Sligte E T, Smeets B, Van Der Stam K M R, Herfst R W, Van Der Straten P, Beijerinck H C W, Van Leeuwen K a H 2004 Appl. Phys. Lett. 85 4493
[9] Drodofsky U, Stuhler J, Schulze T, Drewsen M, Brezger B, Pfau T, Mlynek J 1997 Appl. Phys. B 65 755
[10] Bradley C C, Anderson W R, Mcclelland J J, Celotta R J 1999 Appl. Surf. Sci. 141 210
[11] Zhao M, Wang Z S, Ma B, Li F S 2008 Acta Opt. Sini. 28 381 (in Chinese) [赵敏, 王占山, 马彬, 李佛生 2008 物理学报 28 381]
[12] Zheng C L, Li T B, Ma Y, Ma S S, Zhang B W 2006 Acta Phys. Sin. 55 4528 (in Chinese) [郑春兰, 李同保, 马艳, 马姗姗, 张宝武 2006 物理学报 55 4528]
-
[1] Ma Y, Zhang B W, Zheng C L, Ma S S, Li F S, Wang Z S, Li T B 2007 Acta Phy. Sin. 56 1365 (in Chinese) [马艳, 张宝武, 郑春兰, 马姗姗, 李佛生, 王占山, 李同保 2007 物理学报 56 1365]
[2] Li T B 2005 SMT 32 8 (in Chinese) [李同保 2005 上海计量测试 32 8]
[3] Timp G, Behringer R E, Tennant D M, Cunningham J E, Prentiss M, Berggren K K 1992 Phys. Rev. Lett. 69 1636
[4] Mcclelland J J, Scholten R E, Palm E C, Celotta R J 1993 Science 262 877
[5] Drodofsky U, Stuhler J, Brezger B, Schulze T, Drewsen M, Pfau T, Mlynek J 1997 Microelectron. Eng. 35 285
[6] Mcgowan R W, Giltner D MLee S A 1995 Opt. Lett. 20 2535
[7] Ohmukai S U, Watanabe M 2003 Appl. Phys. B 77 415
[8] Sligte E T, Smeets B, Van Der Stam K M R, Herfst R W, Van Der Straten P, Beijerinck H C W, Van Leeuwen K a H 2004 Appl. Phys. Lett. 85 4493
[9] Drodofsky U, Stuhler J, Schulze T, Drewsen M, Brezger B, Pfau T, Mlynek J 1997 Appl. Phys. B 65 755
[10] Bradley C C, Anderson W R, Mcclelland J J, Celotta R J 1999 Appl. Surf. Sci. 141 210
[11] Zhao M, Wang Z S, Ma B, Li F S 2008 Acta Opt. Sini. 28 381 (in Chinese) [赵敏, 王占山, 马彬, 李佛生 2008 物理学报 28 381]
[12] Zheng C L, Li T B, Ma Y, Ma S S, Zhang B W 2006 Acta Phys. Sin. 55 4528 (in Chinese) [郑春兰, 李同保, 马艳, 马姗姗, 张宝武 2006 物理学报 55 4528]
Catalog
Metrics
- Abstract views: 7290
- PDF Downloads: 5284
- Cited By: 0