-
The approximate solitary-like wave solution for a class of disturbed evolution equation is considered using a simple and valid technique. First, an approximate solution of a corresponding typical differential equation is introduced, and then the approximate solution for an original disturbed evolution equation is obtained using the functional mapping method. It is pointed out that the series of approximate solution is convergent. The accuracy of the approximate solution is also discussed using the analytic method.
-
Keywords:
- solitary-like evolution equation /
- asymptotic method /
[1] Ma S H, Qiang J Y, Fang J P 2007 Commu. Theor. Phys. 48 662
[2] Parkes E J 2008 Chaos, Solitons and Fractals 38 154
[3] Yang J R, Mao J J 2008 Chin. Phys. Lett. 25 1527
[4] Yang X D, Ruan H Y, Lou S Y 2007 Commu. Theor. Phys. 48 961
[5] Yang J R, Mao J J 2008 Chin. Phys. B 17 4337
[6] Pan L X, Zuo W M, Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese) [潘留仙, 左伟明, 颜家壬 2005 物理学报 54 1]
[7] Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣, 洪宝剑, 田立新 2006 物理学报 55 5617]
[8] Taogetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese) [套格图桑, 斯仁道尔吉 2009 物理学报 58 2121]
[9] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press)
[10] Jean-Philippe B 2006 Asymptotic Anal. 46 325
[11] Libre J, da Silva, P R, Teixeira M A 2007 J. Dyn. Differ. Equations 19 309
[12] Shi L F, Mo J Q 2010 Chin. Phys. B 19 050203
[13] Shi L F, Mo J Q 2009 Acta Phys. Sin. 58 8123 (in Chinese) [石兰芳, 莫嘉琪2009 物理学报 58 8123]
[14] Mo J Q 2009 Chin. Phys. Lett. 26 010204
[15] Mo J Q 2009 Sci. China G 39 568
[16] Mo J Q, Lin Y H, Lin W 2010 Chin. Phys. B 19 030202
[17] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
-
[1] Ma S H, Qiang J Y, Fang J P 2007 Commu. Theor. Phys. 48 662
[2] Parkes E J 2008 Chaos, Solitons and Fractals 38 154
[3] Yang J R, Mao J J 2008 Chin. Phys. Lett. 25 1527
[4] Yang X D, Ruan H Y, Lou S Y 2007 Commu. Theor. Phys. 48 961
[5] Yang J R, Mao J J 2008 Chin. Phys. B 17 4337
[6] Pan L X, Zuo W M, Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese) [潘留仙, 左伟明, 颜家壬 2005 物理学报 54 1]
[7] Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese) [卢殿臣, 洪宝剑, 田立新 2006 物理学报 55 5617]
[8] Taogetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese) [套格图桑, 斯仁道尔吉 2009 物理学报 58 2121]
[9] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press)
[10] Jean-Philippe B 2006 Asymptotic Anal. 46 325
[11] Libre J, da Silva, P R, Teixeira M A 2007 J. Dyn. Differ. Equations 19 309
[12] Shi L F, Mo J Q 2010 Chin. Phys. B 19 050203
[13] Shi L F, Mo J Q 2009 Acta Phys. Sin. 58 8123 (in Chinese) [石兰芳, 莫嘉琪2009 物理学报 58 8123]
[14] Mo J Q 2009 Chin. Phys. Lett. 26 010204
[15] Mo J Q 2009 Sci. China G 39 568
[16] Mo J Q, Lin Y H, Lin W 2010 Chin. Phys. B 19 030202
[17] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
Catalog
Metrics
- Abstract views: 8304
- PDF Downloads: 988
- Cited By: 0