Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Macroscopic physical meaning of entransy and its application

Zhao Tian Chen Qun

Citation:

Macroscopic physical meaning of entransy and its application

Zhao Tian, Chen Qun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is an important approach to solve energy problem by improving performance of heat transfer process. The macro physical meaning of new physical quantity for heat transfer process optimization “entransy” is analyzed by comparing it with interrelated concepts in mechanics. From three aspects: the connection of entransy and the external heat transfer ability, efficiency of heat transfer process defined by entransy, and the relation of heat transfer driving force with entransy, the macro physical meaning of entransy is derived, which is the potential energy of heat in the temperature field. Moreover, the application of entransy theory in engineering is introduced through entransy theory optimization in convective heat transfer.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51006060), the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD) (Grant No. 201150).
    [1]

    Xiao L 2008 China-US Energy Cooperation Prospects and Strategies: Improve energy security and environmental protection (Beijing: World Knowledge Press) p16 (in Chinese) [肖炼 2008 中美能源合作前景及对策: 改善能源安全和环境保护 (北京: 世界知识出版社) 第16页]

    [2]

    Bergles A E 1988 J. Heat Transf.-Trans. ASME. 110 1082

    [3]

    Webb R L, Bergles A E 1983 Mech. Eng. 115 60

    [4]

    Webb R L 1994 Principles of Enhanced Heat Transfer (New York: John Wiley & Sons) pp12–30

    [5]

    Guo Z Y, Li Z X, Zhou S Q, Xiong D X 1996 Sci. China-Technol. Sci. 39 68

    [6]

    Zhou S Q 1995 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [周森泉 1995 博士学位论文 (北京: 清华大学)]

    [7]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transf. 41 2221

    [8]

    Guo Z Y 2001 Chin. Sci Bull. 46 596

    [9]

    Bejan A 1979 J. Heat Transf. Trans. ASME. 101 718

    [10]

    Shah R K, Skiepko K 2004 J. Heat Transf. Trans. ASME. 126 994

    [11]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transf. 50 2545

    [12]

    Guo Z Y, Liang X G, Zhu H Y 2006 Prog. Nat. Sci. 16 1288 (in Chinese) [过增元, 梁新刚, 朱宏晔 2006 自然科学进展 16 1288]

    [13]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A-Math. Phys. Eng. Sci. 467 1012

    [14]

    Li Q Y, Chen Q 2011 Chin. Sci. Bull. 56 2819 (in Chinese) [李秦宜, 陈群 2011 科学通报 56 2819]

    [15]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 57

    [16]

    Chen X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [17]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 物理学报 62 134703]

    [18]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [19]

    Yuan F, Chen Q 2011 Energy 36 5476

    [20]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [21]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [22]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈群 2008 博士学位论文 (北京: 清华大学)]

    [23]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [24]

    Chen Q, Ren J X, Meng J A 2007 Int. J. Heat Mass Transf. 50 5334

    [25]

    Meng J A, Liang X G, Li Z X 2005 Int. J. Heat Mass Transf. 48 3331

    [26]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [27]

    Chen Q, Wu J, Wang M R, Pan N, Guo Z Y 2011 Chin. Sci. Bull. 56 79 (in Chinese) [陈群, 吴晶, 王沫然, 潘宁, 过增元 2011 科学通报 56 79]

    [28]

    Liu X B 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [柳雄斌 2009 博士学位论文 (北京: 清华大学)]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 物理学报 58 4766]

    [30]

    Xu Y C, Chen Q 2012 Energy Build. 48 50

    [31]

    Chen Q, Xu Y C 2012 Energy 37 571

    [32]

    Chen Q, Xu Y C 2012 Int. J. Heat Mass Transf. 55 5148

    [33]

    Liu X B, Wang M R, Meng J A, Guo Z Y 2010 Int. J. Nonlinear Sci. Numer. Simul. 11 113

    [34]

    Fourier J 1955 The Analytical Theory of Heat (New York: Courier Dover Publications) p2, 23

    [35]

    Rankine W 1853 Philosophical Magazine 5 106

    [36]

    Li Z X, Guo Z Y 2010 Field Synergy Theory of Convective Heat Transfer (Beijing: Science Press) pp98–127 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第98–127页]

  • [1]

    Xiao L 2008 China-US Energy Cooperation Prospects and Strategies: Improve energy security and environmental protection (Beijing: World Knowledge Press) p16 (in Chinese) [肖炼 2008 中美能源合作前景及对策: 改善能源安全和环境保护 (北京: 世界知识出版社) 第16页]

    [2]

    Bergles A E 1988 J. Heat Transf.-Trans. ASME. 110 1082

    [3]

    Webb R L, Bergles A E 1983 Mech. Eng. 115 60

    [4]

    Webb R L 1994 Principles of Enhanced Heat Transfer (New York: John Wiley & Sons) pp12–30

    [5]

    Guo Z Y, Li Z X, Zhou S Q, Xiong D X 1996 Sci. China-Technol. Sci. 39 68

    [6]

    Zhou S Q 1995 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [周森泉 1995 博士学位论文 (北京: 清华大学)]

    [7]

    Guo Z Y, Li D Y, Wang B X 1998 Int. J. Heat Mass Transf. 41 2221

    [8]

    Guo Z Y 2001 Chin. Sci Bull. 46 596

    [9]

    Bejan A 1979 J. Heat Transf. Trans. ASME. 101 718

    [10]

    Shah R K, Skiepko K 2004 J. Heat Transf. Trans. ASME. 126 994

    [11]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transf. 50 2545

    [12]

    Guo Z Y, Liang X G, Zhu H Y 2006 Prog. Nat. Sci. 16 1288 (in Chinese) [过增元, 梁新刚, 朱宏晔 2006 自然科学进展 16 1288]

    [13]

    Chen Q, Zhu H Y, Pan N, Guo Z Y 2011 Proc. R. Soc. A-Math. Phys. Eng. Sci. 467 1012

    [14]

    Li Q Y, Chen Q 2011 Chin. Sci. Bull. 56 2819 (in Chinese) [李秦宜, 陈群 2011 科学通报 56 2819]

    [15]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 57

    [16]

    Chen X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [程新广 2004 博士学位论文 (北京: 清华大学)]

    [17]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 物理学报 62 134703]

    [18]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [19]

    Yuan F, Chen Q 2011 Energy 36 5476

    [20]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [21]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [22]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈群 2008 博士学位论文 (北京: 清华大学)]

    [23]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [24]

    Chen Q, Ren J X, Meng J A 2007 Int. J. Heat Mass Transf. 50 5334

    [25]

    Meng J A, Liang X G, Li Z X 2005 Int. J. Heat Mass Transf. 48 3331

    [26]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [27]

    Chen Q, Wu J, Wang M R, Pan N, Guo Z Y 2011 Chin. Sci. Bull. 56 79 (in Chinese) [陈群, 吴晶, 王沫然, 潘宁, 过增元 2011 科学通报 56 79]

    [28]

    Liu X B 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [柳雄斌 2009 博士学位论文 (北京: 清华大学)]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 物理学报 58 4766]

    [30]

    Xu Y C, Chen Q 2012 Energy Build. 48 50

    [31]

    Chen Q, Xu Y C 2012 Energy 37 571

    [32]

    Chen Q, Xu Y C 2012 Int. J. Heat Mass Transf. 55 5148

    [33]

    Liu X B, Wang M R, Meng J A, Guo Z Y 2010 Int. J. Nonlinear Sci. Numer. Simul. 11 113

    [34]

    Fourier J 1955 The Analytical Theory of Heat (New York: Courier Dover Publications) p2, 23

    [35]

    Rankine W 1853 Philosophical Magazine 5 106

    [36]

    Li Z X, Guo Z Y 2010 Field Synergy Theory of Convective Heat Transfer (Beijing: Science Press) pp98–127 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第98–127页]

  • [1] Xu Qiu-Mei, Yang Zhi-Hu, Guo Yi-Pan, Liu Hui-Ping, Chen Yan-Hong, Zhao Hong-Yun. Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion. Acta Physica Sinica, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [2] Wang Gang, Xie Zhi-Hui, Fan Xu-Dong, Chen Lin-Gen, Sun Feng-Rui. Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization. Acta Physica Sinica, 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [3] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Experimental study on + shaped high conductivity constructal channels based on entransy theory. Acta Physica Sinica, 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [4] Wang Huan-Guang, Wu Di, Rao Zhong-Hao. Analytical solution of the entransy dissipation of heat conduction process in isolated system. Acta Physica Sinica, 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [5] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory. Acta Physica Sinica, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [6] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [7] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization. Acta Physica Sinica, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [8] Zhai Dai-Liang, Lei Hu-Min, Li Hai-Ning, Li Jiong, Shao Lei. Derivation of the probability hypothesis density filter via the physical-space approach. Acta Physica Sinica, 2014, 63(20): 200204. doi: 10.7498/aps.63.200204
    [9] Wang Ping, Yin Yu-Zhen, Shen Sheng-Qiang. Numerical study of convection heat transfer in ordered three-dimensional porous media. Acta Physica Sinica, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [10] Cheng Xue-Tao, Liang Xin-Gang. Discussion on the application of entransy theory to heat-work conversion processes. Acta Physica Sinica, 2014, 63(19): 190501. doi: 10.7498/aps.63.190501
    [11] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Influence of heat leakage on entransy dissipation minimization of heat exchanger. Acta Physica Sinica, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [12] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels. Acta Physica Sinica, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [13] Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization of a disc on micro and nanoscales. Acta Physica Sinica, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [14] Xiao Bo-Qi, Fan Jin-Tu, Jiang Guo-Ping, Chen Ling-Xia. Analysis of convection heat transfer mechanism in nanofluids. Acta Physica Sinica, 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [15] Zheng Kun-Can, Wen Zhi, Wang Zhan-Sheng, Lou Guo-Feng, Liu Xun-Liang, Wu Wen-Fei. Review on forced convection heat transfer in porous media. Acta Physica Sinica, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [16] Cheng Xue-Tao, Dong Yuan, Liang Xin-Gang. Potential entransy and potential entransy decrease principle. Acta Physica Sinica, 2011, 60(11): 114402. doi: 10.7498/aps.60.114402
    [17] Cheng Xue-Tao, Liang Xin-Gang, Xu Xiang-Hua. Microscopic expression of entransy. Acta Physica Sinica, 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [18] Xie Hua-Qing, Chen Li-Fei. Mechanism of enhanced convective heat transfer coefficient of nanofluids. Acta Physica Sinica, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [19] Ruan Hang-Yu, Chen Yi-Xin. HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELSWITH REAL PHYSICAL SIGNIFICATION. Acta Physica Sinica, 2001, 50(4): 577-585. doi: 10.7498/aps.50.577
    [20] WEN JING, SUN WEI-GUO, FENG HAO. STUDY ON THE POTENTIAL ENERGY CURVES OF ALKALI DIATOMIC MOLECULES WITH ENERGY CO NSISTENT METHOD. Acta Physica Sinica, 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
Metrics
  • Abstract views:  8254
  • PDF Downloads:  613
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2013
  • Accepted Date:  28 August 2013
  • Published Online:  05 December 2013

/

返回文章
返回