搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微、纳米尺度下圆盘(火积)耗散率最小构形优化

陈林根 冯辉君 谢志辉 孙丰瑞

引用本文:
Citation:

微、纳米尺度下圆盘(火积)耗散率最小构形优化

陈林根, 冯辉君, 谢志辉, 孙丰瑞

Constructal entransy dissipation rate minimization of a disc on micro and nanoscales

Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui
PDF
导出引用
  • 基于构形理论, 以(火积)耗散率最小为优化目标, 在微、纳米尺度下对圆盘导热问题进行构形优化, 得到尺寸效应影响下的无量纲当量热阻最小的圆盘构造体最优构形. 结果表明: 在微、纳米尺度下, 尺寸效应影响下的圆盘构造体最优构形与无尺寸效应影响时的圆盘构造体最优构形有明显区别. 存在最佳无量纲高导热材料通道长度使无量纲当量热阻取得最小值; 随着扇形单元体数目的增大, 最小无量纲当量热阻先减小后增大, 存在最佳的扇形单元体数目使得无量纲当量热阻取得双重最小值, 这与常规尺度下圆盘构造体相应的性能特性明显不同. (火积)耗散率最小的圆盘构造体(火积)耗散率比最大温差最小的构造体(火积)耗散率降低了7.31%, 也即圆盘构造体的平均传热温差降低了7.31%. 微、纳米尺度下基于(火积)耗散率最小的圆盘构造体最优构形能够降低圆盘构造体的平均传热温差, 同时有助于提高其整体传热性能. 本文工作有助于进一步拓展(火积)耗散极值原理的应用范围.
    Based on constructal theory, the constructal optimization of a disc on micro and nanoscales is carried out by taking minimum entransy dissipation rate as optimization objective; and the optimal construction of the disc with minimum dimensionless equivalent thermal resistance is obtained. The result shows that the optimal construction of the disc when the size effectis taken into account is obviously different from that without considering the size effect. There exists an optimal dimensionless channel length of the high conductivity material which leads to the minimum dimensionless equivalent thermal resistance. With the increase in the number of the elemental sectors, the minimum dimensionless equivalent thermal resistance decreases first and then increases, and there exists an optimal number of the elemental sectors which leads to the double minimum dimensionless equivalent thermal resistance, which is different from the performance characteristic of the disc on a conventional scale. The entransy dissipation rate of the disc, based on the minimization of entransy dissipation rate, is reduced by 7.31% as compared with that based on maximum temperature difference, that is, the average heat transfer temperature difference of the disc is reduced by 7.31%. The optimal construction on micro and nanoscales, obtained based on minimum entransy dissipation rate, can reduce the average heat transfer temperature difference of a disc, and improves its global heat transfer performance simultaneously. The work in this paper can help to further extend the application range of the entransy dissipation extremum principle.
    • 基金项目: 国家自然科学基金(批准号: 51176203, 51206184)和湖北省自然科学基金(批准号: 2012FB06905)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51176203, 51206184), and the Natural Science Foundation of Hubei Province, China (Grant No. 2012FB06905).
    [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [5]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [6]

    Wu W J, Chen L G, Sun F R 2006 Sci. China Ser. E Tech. Sci. 49 332

    [7]

    Wei S H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 2981

    [8]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [9]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [10]

    Rocha L A O, Lorente S, Bejan A 2006 Int. J. Heat Mass Transfer 49 2626

    [11]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [12]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [13]

    da Silva A K, Vasile C, Bejan A 2004 Int. J. Heat Mass Transfer 47 4257

    [14]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [15]

    Duncan A B, Peterson G P 1994 Appl. Mech. Rev. 47 397

    [16]

    Guo Z Y 2000 Advances In Mechanics 30 1 (in Chinese) [过增元 2000 力学进展 30 1]

    [17]

    Guo Z Y, Li Z X 2003 Int. J. Heat Mass Transfer 46 149

    [18]

    Guo Z Y, Li Z X 2003 Int. J. Heat Fluid Flow 24 284

    [19]

    Liu T, Ji J, Guo Z Y, Li Z X 2004 Chin. Sci. fund 6 349 (in Chinese) [刘涛, 纪军, 过增元, 李志信 2004 中国科学基金 6 349]

    [20]

    Gosselin L, Bejan A 2004 J. Appl. Phys. 96 5852

    [21]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [22]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]

    [23]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [24]

    Han G Z, Zhu H Y, Cheng X X, Guo Z Y 2005 J. Engng. Thermophys 26 1022 (in Chinese) [韩光泽, 朱宏晔, 程新广, 过增元 2005 工程热物理学报 26 1022]

    [25]

    Han G, Guo Z Y 2007 Proc. CSEE 27 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 27 98]

    [26]

    hu H Y, Chen Z J, Guo Z Y 2007 Pro. Natural Sci. 17 1692 (in Chinese) [朱宏晔, 陈泽敬, 过增元 2007 自然科学进展 17 1692]

    [27]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [28]

    Chen L G 2013 J. Naval University Engng 25 1 (in Chinese) [陈林根 2013 海军工程大学学报 25 1]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 物理学报 58 4766]

    [30]

    Xu M 2011 Energy 36 4272

    [31]

    Guo J F, Xu M T, Cheng L 2011 Sci. China Tech. Sci. 54 1267

    [32]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 物理学报 60 118103]

    [33]

    Cheng X T, Dong Y, Liang X G 2011 Acta Phys. Sin. 60 114402 (in Chinese) [程雪涛, 董源, 梁新刚 2011 物理学报 60 114402]

    [34]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [35]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [36]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [37]

    Chen Q, Xu Y C, Guo Z Y 2012 Chin. Sci. Bull. 57 4646

    [38]

    Guo J F, Huai X L 2012 Energy 43 355

    [39]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sc. 55 779

    [40]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [41]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [42]

    Bejan A 1982 Entropy Generation through Heat and Fluid Flow (New York: Wiley) pp1-240

    [43]

    Dong Y, Guo Z Y 2012 Acta Phys. Sin. 61 030507 (in Chinese) [董源, 过增元 2012 物理学报 61 030507]

    [44]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

  • [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [5]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [6]

    Wu W J, Chen L G, Sun F R 2006 Sci. China Ser. E Tech. Sci. 49 332

    [7]

    Wei S H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 2981

    [8]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [9]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [10]

    Rocha L A O, Lorente S, Bejan A 2006 Int. J. Heat Mass Transfer 49 2626

    [11]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [12]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [13]

    da Silva A K, Vasile C, Bejan A 2004 Int. J. Heat Mass Transfer 47 4257

    [14]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [15]

    Duncan A B, Peterson G P 1994 Appl. Mech. Rev. 47 397

    [16]

    Guo Z Y 2000 Advances In Mechanics 30 1 (in Chinese) [过增元 2000 力学进展 30 1]

    [17]

    Guo Z Y, Li Z X 2003 Int. J. Heat Mass Transfer 46 149

    [18]

    Guo Z Y, Li Z X 2003 Int. J. Heat Fluid Flow 24 284

    [19]

    Liu T, Ji J, Guo Z Y, Li Z X 2004 Chin. Sci. fund 6 349 (in Chinese) [刘涛, 纪军, 过增元, 李志信 2004 中国科学基金 6 349]

    [20]

    Gosselin L, Bejan A 2004 J. Appl. Phys. 96 5852

    [21]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [22]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]

    [23]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [24]

    Han G Z, Zhu H Y, Cheng X X, Guo Z Y 2005 J. Engng. Thermophys 26 1022 (in Chinese) [韩光泽, 朱宏晔, 程新广, 过增元 2005 工程热物理学报 26 1022]

    [25]

    Han G, Guo Z Y 2007 Proc. CSEE 27 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 27 98]

    [26]

    hu H Y, Chen Z J, Guo Z Y 2007 Pro. Natural Sci. 17 1692 (in Chinese) [朱宏晔, 陈泽敬, 过增元 2007 自然科学进展 17 1692]

    [27]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [28]

    Chen L G 2013 J. Naval University Engng 25 1 (in Chinese) [陈林根 2013 海军工程大学学报 25 1]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 物理学报 58 4766]

    [30]

    Xu M 2011 Energy 36 4272

    [31]

    Guo J F, Xu M T, Cheng L 2011 Sci. China Tech. Sci. 54 1267

    [32]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 物理学报 60 118103]

    [33]

    Cheng X T, Dong Y, Liang X G 2011 Acta Phys. Sin. 60 114402 (in Chinese) [程雪涛, 董源, 梁新刚 2011 物理学报 60 114402]

    [34]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [35]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [36]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [37]

    Chen Q, Xu Y C, Guo Z Y 2012 Chin. Sci. Bull. 57 4646

    [38]

    Guo J F, Huai X L 2012 Energy 43 355

    [39]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sc. 55 779

    [40]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [41]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [42]

    Bejan A 1982 Entropy Generation through Heat and Fluid Flow (New York: Wiley) pp1-240

    [43]

    Dong Y, Guo Z Y 2012 Acta Phys. Sin. 61 030507 (in Chinese) [董源, 过增元 2012 物理学报 61 030507]

    [44]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

  • [1] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化. 物理学报, 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [2] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [4] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [5] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [6] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [9] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [10] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇. 质子交换膜燃料电池多时间尺度下的动态特性. 物理学报, 2022, 71(15): 158802. doi: 10.7498/aps.71.20212015
    [11] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [12] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [13] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [14] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [15] 宋飞龙, 王玉暖, 张峰, 武诗谣, 谢昕, 杨静南, 孙思白, 党剑臣, 肖姗, 杨龙龙, 钟海政, 许秀来. CH3NH3PbBr3纳米线中束缚激子g因子的各向异性. 物理学报, 2020, 69(16): 167102. doi: 10.7498/aps.69.20200646
    [16] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [17] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [18] 田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠. 宽带高效聚焦的片上集成纳米透镜. 物理学报, 2020, 69(24): 244201. doi: 10.7498/aps.69.20200948
    [19] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [20] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
计量
  • 文章访问数:  5239
  • PDF下载量:  633
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-07
  • 修回日期:  2013-03-22
  • 刊出日期:  2013-07-05

/

返回文章
返回