-
The model of nonlinear disturbed mechanism for one-dimensional Fermi gas is investigated. Firstly, the corresponding functional is constructed; secondly, its Lagrange operator is selected; using the modified generalized variational iteration method, the approximate analytic solutions of corresponding path curves are obtained. A simple example is given, and the approximation accuracy obtained by using the modified generalized variational iteration method is shown to be better. The aim of this article is to provide a valid method of solving the nonlinear physical problems.
-
Keywords:
- nonlinear /
- path curve /
- approximate solution
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
[2] Men F D, Liu H, Fan Z L, Zhu H Y 2009 Chin. Phys. B 18 2649
[3] Mu Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese) [马云, 傅立斌, 杨志安, 刘杰 2006 物理学报 55 5623]
[4] Wen W, Shen S Q, Huang G X 2010 Phys. Rev. B 81 014528
[5] Zang X F, Li J P, Tan L 2007 Acta Phys. Sin. 56 4348 (in Chinese) [臧小飞, 李菊萍, 谭磊 2007 物理学报 56 4348]
[6] Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 13619
[7] Qi P T, Duan W S 2011 Phys. Rev. A 84 033627
[8] Adhikari S K, Malomed B A, Salasnich L, Toigo F 2010 Phys. Rev. A 81 053630
[9] Cheng Y S, Adhikari S K 2011 Phys. Rev. A 84 023632
[10] Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301
[11] Wang W Y, Meng H J, Yang Y, Qi P T, Ma Y Y, Ma Y, Duan W S 2012 Acta Phys. Sin. 61 087302 (in Chinese) [王文元, 蒙红娟, 杨阳, 祁鹏堂, 马云云, 马莹, 段文山 2012 物理学报 61 087302]
[12] Huang F, Li H B 2011 Acta Phys. Sin. 60 020303 (in Chinese) [黄芳, 李海彬 2011 物理学报 60 020303]
[13] Modugno G, Roati G, Riboli F, Ferlaino F, Brecha R J, Inguscio M 2002 Science 297 2240
[14] Volz T, Drr S, Ernst S, Marte A, Rempe G 2003 Phys. Rev. A 68 010702
[15] Gou X Q, Yan M, Ling W D, Zhao H Y, Duan W S 2013 Acta Phys. Sin. 62 130308 (in Chinese) [苟学强, 闫明, 令伟栋, 赵红玉, 段文山 2013 物理学报 62 130308]
[16] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
[17] Mo J Q 2011 Acta Phys. Sin. 60 090203 (in Chinese) [莫嘉琪 2011 物理学报 60 090203]
[18] Mo J Q, Cheng R J, Ge H X 2011 Acta Phys. Sin. 60 050204 (in Chinese) [莫嘉琪, 程荣军, 葛红霞 2011 物理学报 60 050204]
[19] Mo J Q 2011 Acta Phys. Sin. 60 030203 (in Chinese) [莫嘉琪 2011 物理学报 60 030203]
[20] Mo J Q 2011 Commun. Theor. Phys. 55 387
[21] Shi L F, Zhou X C, Mo J Q 2011 Acta Phys. Sin. 60 110205 (in Chinese) [石兰芳, 周先春, 莫嘉琪 2011 物理学报 60 110205]
[22] Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]
[23] Shi L F, Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese) [石兰芳, 莫嘉琪 2013 物理学报 62 040203]
[24] Zhou X C, Lin W T, Lin Y H, Mo J Q 2012 Acta Phys. Sin. 61 240202 (in Chinese) [周先春, 林万涛, 林一骅, 莫嘉琪 2012 物理学报 61 240202]
[25] Zhou X C, Lin W T, Lin Y H, Yao J S, Mo J Q 2011 Acta Phys. Sin. 60 110207 (in Chinese) [周先春, 林万涛, 林一骅, 姚静荪, 莫嘉琪 2011 物理学报 60 110207]
[26] Han X L, Zhao Z J, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese) [韩祥临, 赵振江, 程荣军, 莫嘉琪 2013 物理学报 62 040203]
[27] Ouyang C, Yao J S, Wen Z H, Mo J Q 2012 Acta Phys. Sin. 61 030202 (in Chinese) [欧阳成, 姚静荪, 温朝晖, 莫嘉琪 2012 物理学报 61 030202]
[28] He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Zhengzhou: Science and Technology Publisher) (in Chinese) [何吉欢 2002 工程与科学计算中的近似非线性分析方法 (郑州: 河南科学技术出版社)]
-
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
[2] Men F D, Liu H, Fan Z L, Zhu H Y 2009 Chin. Phys. B 18 2649
[3] Mu Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese) [马云, 傅立斌, 杨志安, 刘杰 2006 物理学报 55 5623]
[4] Wen W, Shen S Q, Huang G X 2010 Phys. Rev. B 81 014528
[5] Zang X F, Li J P, Tan L 2007 Acta Phys. Sin. 56 4348 (in Chinese) [臧小飞, 李菊萍, 谭磊 2007 物理学报 56 4348]
[6] Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 13619
[7] Qi P T, Duan W S 2011 Phys. Rev. A 84 033627
[8] Adhikari S K, Malomed B A, Salasnich L, Toigo F 2010 Phys. Rev. A 81 053630
[9] Cheng Y S, Adhikari S K 2011 Phys. Rev. A 84 023632
[10] Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301
[11] Wang W Y, Meng H J, Yang Y, Qi P T, Ma Y Y, Ma Y, Duan W S 2012 Acta Phys. Sin. 61 087302 (in Chinese) [王文元, 蒙红娟, 杨阳, 祁鹏堂, 马云云, 马莹, 段文山 2012 物理学报 61 087302]
[12] Huang F, Li H B 2011 Acta Phys. Sin. 60 020303 (in Chinese) [黄芳, 李海彬 2011 物理学报 60 020303]
[13] Modugno G, Roati G, Riboli F, Ferlaino F, Brecha R J, Inguscio M 2002 Science 297 2240
[14] Volz T, Drr S, Ernst S, Marte A, Rempe G 2003 Phys. Rev. A 68 010702
[15] Gou X Q, Yan M, Ling W D, Zhao H Y, Duan W S 2013 Acta Phys. Sin. 62 130308 (in Chinese) [苟学强, 闫明, 令伟栋, 赵红玉, 段文山 2013 物理学报 62 130308]
[16] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
[17] Mo J Q 2011 Acta Phys. Sin. 60 090203 (in Chinese) [莫嘉琪 2011 物理学报 60 090203]
[18] Mo J Q, Cheng R J, Ge H X 2011 Acta Phys. Sin. 60 050204 (in Chinese) [莫嘉琪, 程荣军, 葛红霞 2011 物理学报 60 050204]
[19] Mo J Q 2011 Acta Phys. Sin. 60 030203 (in Chinese) [莫嘉琪 2011 物理学报 60 030203]
[20] Mo J Q 2011 Commun. Theor. Phys. 55 387
[21] Shi L F, Zhou X C, Mo J Q 2011 Acta Phys. Sin. 60 110205 (in Chinese) [石兰芳, 周先春, 莫嘉琪 2011 物理学报 60 110205]
[22] Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]
[23] Shi L F, Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese) [石兰芳, 莫嘉琪 2013 物理学报 62 040203]
[24] Zhou X C, Lin W T, Lin Y H, Mo J Q 2012 Acta Phys. Sin. 61 240202 (in Chinese) [周先春, 林万涛, 林一骅, 莫嘉琪 2012 物理学报 61 240202]
[25] Zhou X C, Lin W T, Lin Y H, Yao J S, Mo J Q 2011 Acta Phys. Sin. 60 110207 (in Chinese) [周先春, 林万涛, 林一骅, 姚静荪, 莫嘉琪 2011 物理学报 60 110207]
[26] Han X L, Zhao Z J, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese) [韩祥临, 赵振江, 程荣军, 莫嘉琪 2013 物理学报 62 040203]
[27] Ouyang C, Yao J S, Wen Z H, Mo J Q 2012 Acta Phys. Sin. 61 030202 (in Chinese) [欧阳成, 姚静荪, 温朝晖, 莫嘉琪 2012 物理学报 61 030202]
[28] He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Zhengzhou: Science and Technology Publisher) (in Chinese) [何吉欢 2002 工程与科学计算中的近似非线性分析方法 (郑州: 河南科学技术出版社)]
Catalog
Metrics
- Abstract views: 5640
- PDF Downloads: 435
- Cited By: 0