Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pre-synthesized quantum dot deposition approach to obtain high efficient quantum dot solar cells

Li Wen-Jie Zhong Xin-Hua

Citation:

Pre-synthesized quantum dot deposition approach to obtain high efficient quantum dot solar cells

Li Wen-Jie, Zhong Xin-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum dot sensitized solar cells (QDSCs) appear to be one of the promising photovoltaic candidates, due to the lower cost of obtaining materials and assembling processes, as well as the advantages of their QD sensitizers which exhibit properties of tailoring the absorbance spectrum to near-infrared (NIR) regions, the multiple exciton generation (MEG), hot electron extraction, etc. However, the difficulty of QDs penetrating into TiO2 mesoporous film remains to be an obstacle for the development of QDSCs, which comes from (1) their larger size (1-10 nm) compared with dye molecules, (2) steric hindrance from the long chain organic ligands on the surface, and (3) the lack of terminal functional group of the ligand with affinity to TiO2. These issues imply the importance of implementing an efficient QD deposition method in the fabrication process. Based on summarizing the advantages and shortcomings, this review demonstrates the development of the QD deposition approaches in direct growth deposition methods: the chemical bath deposition (CBD) method, the successive ionic layer adsorption and reaction (SILAR) method, and the pre-synthesized QD deposition methods: linker-assisted deposition (LA), direct absorption (DA) and electrophoretic deposition (EPD). As an overall comparison to be taken for all these deposition approaches, the pre-synthesized QD deposition method has outperformed the direct growth deposition method due to the use of pre-synthesized high quality QD sensitizers for better performance in surface chemistry. Especially, the LA approach in this method exhibits its excellence of fast and uniform QD deposition with high coverage, as well as in building high efficiency QDSC devices. Specifically, the improved structure of the sensitizers such as the inverted type-I, type-II core/shell structures and alloyed configuration through surface ion-exchange, has been employed to boost the charge injection and depress the charge recombination, benefited from LA pre-synthesized QDs deposition method. The advantages of the LA method are fully illustrated by the examples of the most recent work in the achievement of reaching the record efficiency of QDSCs. Finally, outlooks have been given on possible approaches to realize further improvement of fabricating the QDSCs with excellent performance at higher levels.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21175043), and the Science and Technology Commission of Shanghai Municipality of China (Grant Nos. 11JC1403100, 12ZR1407700).
    [1]

    Kamat P V 2013 J. Phys. Chem. Lett. 4 908

    [2]

    Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664

    [3]

    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095

    [4]

    Kramer I J, Sargent E H 2014 Chem. Rev. 114 863

    [5]

    Hodes G 2008 J. Phys. Chem. C 112 17778

    [6]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [7]

    Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879

    [8]

    Kamat P V 2008 J. Phys. Chem. C 112 18737

    [9]

    Kramer I J, Sargent E H 2011 ACS Nano 5 8506

    [10]

    Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232

    [11]

    Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033

    [12]

    Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290

    [13]

    Tang J, Sargent E H 2011 Adv. Mater. 23 12

    [14]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [15]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [16]

    Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203

    [17]

    Hod I, Zaban A 2014 Langmuir 30 7264

    [18]

    Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716

    [19]

    Corer S, Hodes G 1994 J. Phys. Chem. 98 5338

    [20]

    Yochelis S, Hodes G 2004 Chem. Mater. 16 2740

    [21]

    Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834

    [22]

    Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769

    [23]

    Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201

    [24]

    Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306

    [25]

    Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604

    [26]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [27]

    Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337

    [28]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [29]

    Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92

    [30]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [31]

    Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183

    [32]

    Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65

    [33]

    Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578

    [34]

    Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602

    [35]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [36]

    Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458

    [37]

    Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805

    [38]

    Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636

    [39]

    Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783

    [40]

    Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508

    [41]

    Watson D F 2010 J. Phys. Chem. Lett. 1 2299

    [42]

    Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53

    [43]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [44]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [45]

    Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49

    [46]

    Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823

    [47]

    Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504

    [48]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [49]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962

    [50]

    Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722

    [51]

    Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494

    [52]

    Mann J R, Watson D F 2007 Langmuir 23 10924

    [53]

    Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903

    [54]

    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007

    [55]

    Bang J H, Kamat P V 2009 ACS Nano 3 1467

    [56]

    Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208

    [57]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [58]

    Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221

    [59]

    Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109

    [60]

    Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329

    [61]

    Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844

    [62]

    Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600

    [63]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [64]

    Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793

    [65]

    Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206

    [66]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [67]

    Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674

    [68]

    Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265

    [69]

    Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839

    [70]

    Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235

    [71]

    Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768

    [72]

    Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982

    [73]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215

    [74]

    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913

    [75]

    Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699

    [76]

    Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835

    [77]

    Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877

    [78]

    Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378

    [79]

    Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184

    [80]

    Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848

    [81]

    Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315

    [82]

    Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903

    [83]

    Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881

    [84]

    McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887

    [85]

    McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355

    [86]

    Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756

    [87]

    Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240

    [88]

    Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064

    [89]

    Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360

    [90]

    Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089

  • [1]

    Kamat P V 2013 J. Phys. Chem. Lett. 4 908

    [2]

    Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664

    [3]

    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095

    [4]

    Kramer I J, Sargent E H 2014 Chem. Rev. 114 863

    [5]

    Hodes G 2008 J. Phys. Chem. C 112 17778

    [6]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [7]

    Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879

    [8]

    Kamat P V 2008 J. Phys. Chem. C 112 18737

    [9]

    Kramer I J, Sargent E H 2011 ACS Nano 5 8506

    [10]

    Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232

    [11]

    Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033

    [12]

    Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290

    [13]

    Tang J, Sargent E H 2011 Adv. Mater. 23 12

    [14]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [15]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [16]

    Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203

    [17]

    Hod I, Zaban A 2014 Langmuir 30 7264

    [18]

    Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716

    [19]

    Corer S, Hodes G 1994 J. Phys. Chem. 98 5338

    [20]

    Yochelis S, Hodes G 2004 Chem. Mater. 16 2740

    [21]

    Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834

    [22]

    Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769

    [23]

    Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201

    [24]

    Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306

    [25]

    Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604

    [26]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [27]

    Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337

    [28]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [29]

    Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92

    [30]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [31]

    Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183

    [32]

    Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65

    [33]

    Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578

    [34]

    Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602

    [35]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [36]

    Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458

    [37]

    Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805

    [38]

    Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636

    [39]

    Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783

    [40]

    Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508

    [41]

    Watson D F 2010 J. Phys. Chem. Lett. 1 2299

    [42]

    Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53

    [43]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [44]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [45]

    Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49

    [46]

    Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823

    [47]

    Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504

    [48]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [49]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962

    [50]

    Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722

    [51]

    Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494

    [52]

    Mann J R, Watson D F 2007 Langmuir 23 10924

    [53]

    Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903

    [54]

    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007

    [55]

    Bang J H, Kamat P V 2009 ACS Nano 3 1467

    [56]

    Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208

    [57]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [58]

    Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221

    [59]

    Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109

    [60]

    Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329

    [61]

    Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844

    [62]

    Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600

    [63]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [64]

    Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793

    [65]

    Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206

    [66]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [67]

    Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674

    [68]

    Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265

    [69]

    Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839

    [70]

    Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235

    [71]

    Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768

    [72]

    Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982

    [73]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215

    [74]

    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913

    [75]

    Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699

    [76]

    Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835

    [77]

    Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877

    [78]

    Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378

    [79]

    Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184

    [80]

    Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848

    [81]

    Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315

    [82]

    Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903

    [83]

    Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881

    [84]

    McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887

    [85]

    McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355

    [86]

    Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756

    [87]

    Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240

    [88]

    Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064

    [89]

    Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360

    [90]

    Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089

  • [1] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He. Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition. Acta Physica Sinica, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [3] He Ren, Li Ying-Ye, Chen Jing-Xin, Zhao Xue-Ling, Tang Huan, Zhang Li-Na, Shen Yan-Jiao, Li Feng, Yang Lin, Wei De-Yuan. Three-point and four-point mechanical bending test modeling and application in solar cells. Acta Physica Sinica, 2019, 68(20): 208801. doi: 10.7498/aps.68.20190597
    [4] Ren Lun, Li Kui-Ying, Cui Jie-Yuan, Zhao Jie. Photoelectron characteristics of ZnSe quantum dots-sensitized mesoporous La-doped nano-TiO2 film. Acta Physica Sinica, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [5] Zhang Xiao-Yu, Zhang Li-Ping, Ma Zhong-Quan, Liu Zheng-Xin. Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells. Acta Physica Sinica, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [6] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Hao Juan. Investigation on characteristics of solar cells made of MOPPV/ZnSe quantum dots composite system. Acta Physica Sinica, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [7] Xu Wei-Wei, Hu Lin-Hua, Luo Xiang-Dong, Liu Pei-Sheng, Dai Song-Yuan. Photoelectricity performance research based on the sol-modified thin film electrode of dye-sensitized solar cells. Acta Physica Sinica, 2012, 61(8): 088801. doi: 10.7498/aps.61.088801
    [8] Jiang Bing-Yi, Zheng Jian-Bang, Wang Chun-Feng, Hao Juan, Cao Chong-De. Optimization of quantum dot solar cells based on structures of GaAs/InAs-GaAs/ZnSe. Acta Physica Sinica, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [9] Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias. Acta Physica Sinica, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [10] Kou Dong-Xing, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan, Jiang Nian-Quan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [11] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [12] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [13] Han Xiao-Yan, Hou Guo-Fu, Wei Chang-Chun, Zhang Xiao-Dan, Dai Zhi-Hua, Li Gui-Jun, Sun Jian, Chen Xin-Liang, Zhang De-Kun, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Optimization of high rate growth high quality μc-Si:H thin films and its application to the solar cells. Acta Physica Sinica, 2009, 58(6): 4254-4259. doi: 10.7498/aps.58.4254
    [14] Guo Li, Liang Lin-Yun, Chen Chong, Wang Ming-Tai, Kong Ming-Guang, Wang Kong-Jia. Electron transport in solid-state dye-sensitized solar cells based on polyaniline. Acta Physica Sinica, 2007, 56(7): 4270-4276. doi: 10.7498/aps.56.4270
    [15] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [16] Dong Qing-Rui. Two-electron InAs quantum-dot-molecular qubit modulated by the orientation of magnetic fields. Acta Physica Sinica, 2007, 56(9): 5436-5440. doi: 10.7498/aps.56.5436
    [17] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] WANG LI-MIN, LUO YING, MA BEN-KUN. ELECTRONIC STRUCTURE OF DOUBLE QUANTUM-DOT MOLECULE. Acta Physica Sinica, 2001, 50(2): 278-286. doi: 10.7498/aps.50.278
Metrics
  • Abstract views:  7152
  • PDF Downloads:  1032
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2014
  • Accepted Date:  04 December 2014
  • Published Online:  05 February 2015

/

返回文章
返回