-
Quantum dot sensitized solar cells (QDSCs) appear to be one of the promising photovoltaic candidates, due to the lower cost of obtaining materials and assembling processes, as well as the advantages of their QD sensitizers which exhibit properties of tailoring the absorbance spectrum to near-infrared (NIR) regions, the multiple exciton generation (MEG), hot electron extraction, etc. However, the difficulty of QDs penetrating into TiO2 mesoporous film remains to be an obstacle for the development of QDSCs, which comes from (1) their larger size (1-10 nm) compared with dye molecules, (2) steric hindrance from the long chain organic ligands on the surface, and (3) the lack of terminal functional group of the ligand with affinity to TiO2. These issues imply the importance of implementing an efficient QD deposition method in the fabrication process. Based on summarizing the advantages and shortcomings, this review demonstrates the development of the QD deposition approaches in direct growth deposition methods: the chemical bath deposition (CBD) method, the successive ionic layer adsorption and reaction (SILAR) method, and the pre-synthesized QD deposition methods: linker-assisted deposition (LA), direct absorption (DA) and electrophoretic deposition (EPD). As an overall comparison to be taken for all these deposition approaches, the pre-synthesized QD deposition method has outperformed the direct growth deposition method due to the use of pre-synthesized high quality QD sensitizers for better performance in surface chemistry. Especially, the LA approach in this method exhibits its excellence of fast and uniform QD deposition with high coverage, as well as in building high efficiency QDSC devices. Specifically, the improved structure of the sensitizers such as the inverted type-I, type-II core/shell structures and alloyed configuration through surface ion-exchange, has been employed to boost the charge injection and depress the charge recombination, benefited from LA pre-synthesized QDs deposition method. The advantages of the LA method are fully illustrated by the examples of the most recent work in the achievement of reaching the record efficiency of QDSCs. Finally, outlooks have been given on possible approaches to realize further improvement of fabricating the QDSCs with excellent performance at higher levels.
-
Keywords:
- quantum dot sensitized solar cells /
- deposition approach /
- pre-synthesized quantum dot /
- linker-assisted deposition
[1] Kamat P V 2013 J. Phys. Chem. Lett. 4 908
[2] Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664
[3] Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095
[4] Kramer I J, Sargent E H 2014 Chem. Rev. 114 863
[5] Hodes G 2008 J. Phys. Chem. C 112 17778
[6] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897
[7] Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879
[8] Kamat P V 2008 J. Phys. Chem. C 112 18737
[9] Kramer I J, Sargent E H 2011 ACS Nano 5 8506
[10] Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232
[11] Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033
[12] Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290
[13] Tang J, Sargent E H 2011 Adv. Mater. 23 12
[14] Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530
[15] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629
[16] Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203
[17] Hod I, Zaban A 2014 Langmuir 30 7264
[18] Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716
[19] Corer S, Hodes G 1994 J. Phys. Chem. 98 5338
[20] Yochelis S, Hodes G 2004 Chem. Mater. 16 2740
[21] Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834
[22] Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769
[23] Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201
[24] Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306
[25] Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604
[26] Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517
[27] Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337
[28] Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396
[29] Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92
[30] Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124
[31] Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183
[32] Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65
[33] Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578
[34] Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602
[35] Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221
[36] Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458
[37] Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805
[38] Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636
[39] Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783
[40] Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508
[41] Watson D F 2010 J. Phys. Chem. Lett. 1 2299
[42] Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53
[43] Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153
[44] Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204
[45] Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49
[46] Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823
[47] Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504
[48] Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890
[49] Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962
[50] Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722
[51] Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494
[52] Mann J R, Watson D F 2007 Langmuir 23 10924
[53] Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903
[54] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007
[55] Bang J H, Kamat P V 2009 ACS Nano 3 1467
[56] Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208
[57] Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007
[58] Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221
[59] Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109
[60] Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329
[61] Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844
[62] Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600
[63] Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579
[64] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793
[65] Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206
[66] Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579
[67] Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674
[68] Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265
[69] Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839
[70] Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235
[71] Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768
[72] Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982
[73] Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215
[74] Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913
[75] Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699
[76] Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835
[77] Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877
[78] Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378
[79] Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184
[80] Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848
[81] Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315
[82] Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903
[83] Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881
[84] McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887
[85] McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355
[86] Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756
[87] Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240
[88] Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064
[89] Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360
[90] Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089
-
[1] Kamat P V 2013 J. Phys. Chem. Lett. 4 908
[2] Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664
[3] Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095
[4] Kramer I J, Sargent E H 2014 Chem. Rev. 114 863
[5] Hodes G 2008 J. Phys. Chem. C 112 17778
[6] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897
[7] Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879
[8] Kamat P V 2008 J. Phys. Chem. C 112 18737
[9] Kramer I J, Sargent E H 2011 ACS Nano 5 8506
[10] Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232
[11] Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033
[12] Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290
[13] Tang J, Sargent E H 2011 Adv. Mater. 23 12
[14] Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530
[15] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629
[16] Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203
[17] Hod I, Zaban A 2014 Langmuir 30 7264
[18] Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716
[19] Corer S, Hodes G 1994 J. Phys. Chem. 98 5338
[20] Yochelis S, Hodes G 2004 Chem. Mater. 16 2740
[21] Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834
[22] Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769
[23] Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201
[24] Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306
[25] Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604
[26] Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517
[27] Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337
[28] Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396
[29] Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92
[30] Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124
[31] Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183
[32] Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65
[33] Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578
[34] Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602
[35] Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221
[36] Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458
[37] Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805
[38] Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636
[39] Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783
[40] Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508
[41] Watson D F 2010 J. Phys. Chem. Lett. 1 2299
[42] Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53
[43] Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153
[44] Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204
[45] Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49
[46] Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823
[47] Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504
[48] Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890
[49] Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962
[50] Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722
[51] Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494
[52] Mann J R, Watson D F 2007 Langmuir 23 10924
[53] Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903
[54] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007
[55] Bang J H, Kamat P V 2009 ACS Nano 3 1467
[56] Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208
[57] Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007
[58] Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221
[59] Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109
[60] Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329
[61] Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844
[62] Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600
[63] Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579
[64] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793
[65] Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206
[66] Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579
[67] Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674
[68] Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265
[69] Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839
[70] Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235
[71] Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768
[72] Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982
[73] Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215
[74] Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913
[75] Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699
[76] Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835
[77] Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877
[78] Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378
[79] Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184
[80] Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848
[81] Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315
[82] Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903
[83] Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881
[84] McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887
[85] McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355
[86] Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756
[87] Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240
[88] Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064
[89] Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360
[90] Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089
Catalog
Metrics
- Abstract views: 7152
- PDF Downloads: 1032
- Cited By: 0