-
Ba0.6Sr0.4TiO3 (BST) nanotubes are fabricated successfully by sol-sel method with the through-hole anodic aluminum oxide (AAO) template for the first time so far as we know. This fabrication method is easy to realize at low cost because the through-hole AAO template and the BST sol can be acquired easily at low cost, so this is very valuable in the fabrication of other similar nanostructures. First, the steady BST sol is prepared and the well aligned through-hole anodic aluminum oxide template is fabricated by a two-step anodization method; second, the BST sol is introduced into the ordered nanohole arrays of the through-hole AAO template by dipping and spinning; and finally, the samples are fired in air at 650℃ for 1 h to get BST nanotubes. X ray diffraction (XRD) patterns reveal that the BST nanotubes are of cubic perovskite structures, and grow mainly along [110] crystal orientation. Scanning electron microscope (SEM) results show that the thickness and pore size of the through-hole AAO template are about 16 μm and 75 nm, respectively. The length, external and inner diameters of the BST nanotubes are about 16 μm, 75 nm and 50 nm, respectively. Measurements of BST nanotubes give results highly matched with that of the through-hole AAO template. Fourier transform infrared spectroscopy (FTIR) results shows that in the 1350-1650 cm-1 waveband, the composite structure of AAO/BST nanotubes has two obvious absorption peaks which are respectively at 1470 and 1550 cm-1, while the BST film does not have; the absorption property of the composite structure is about two times of the pure through-hole AAO membrane. Finally, the possible reasons of this phenomenon about infrared absorption are discussed.
-
Keywords:
- sol-gel /
- through-hole anodic aluminum oxide /
- BST nanotube /
- infrared absorption
[1] Hwang C S 1998 Mater. Sci. Eng. B 56 178
[2] Balachandran1 R, Ong B H, Wong H Y, Tan K B,Muhamad Rasat M 2012 Int. J. Electrochem. Sci. 711895
[3] Chang H J, Moon K P, Seong I W 2012 Appl. Phys.Lett. 100 262107
[4] Zhang T J, Huang H, Chen R 2011 Ferroelectrics 410137
[5] Cheng J G, Tang J, Meng X J, Guo S L, Chu J H 2001 J. Am. Ceram. Soc. 84 1421
[6] Zhang G Z, Jiang S L, Zeng Y K, Zhang Y Y, Zhang Q F, Yu F, Wang J 2011 Phys. Status Solidi A 208 11 699
[7] Friederich A, Kohler C, Nikfalazar M, Wiens A., Sazegar M, Jakoby R, Bauer W, Binder J R 2014 J. Eur. Ceram.Soc. 34 2925
[8] Schafranek R, Andre G, G. Balogh A, Enz T, Zheng Y L, Scheele P, Jakoby R, Klein A 2009 J. Eur. Ceram.Soc. 29 1433
[9] Zhang M W, Zhai J W, Shen B, Yao X 2011 J. Am.Ceram. Soc. 94 3883
[10] Masuda H, Fukuda K 1995 Science 268 1466
[11] Zhang Z, Xu Z M, Sun T Y, Xu H F, Chen C H, Peng 2014 Acta Phys. Sin. 63 018102 (in Chinese) [张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静2014 物理学报63 018102]
[12] Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛2010 物理学报59 5851]
[13] Xu C L, Li H, Zhao G Y, Li HL 2006 Mater. Lett. 60 2335
[14] Banerjee P, Perez I, Henn-Lecordier L, Bok Lee S, W. Rubloff Gary 2009 Nat. Nanotechnol. 4 292
[15] Yu J, Liao J X, Jin L, Wei X B, W P, WEI X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健,廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强2011 物理学报60 077701]
[16] Cui J W, Wu Y C, Wang Y, Zheng H M, Xu G Q, Zhang X Y 2012 Appl. Surf. Sci. 258 5305
[17] Katarzyna Osińska, Dionizy Czekaj 2013 J. Therm. Anal. Calorim. 113 69
[18] Ali N, Duan X F, Jiang Z T, Goh B M, Lamb R, Tadich A, Poinern G E J, Fawcett D, Chapman P, Singh P 2014 Appl. Surf. Sci. 289 560
[19] Qin F F, Zhang H, Wang C X, Zhang J J, Guo C 2014 Opt. Commun. 331 325
-
[1] Hwang C S 1998 Mater. Sci. Eng. B 56 178
[2] Balachandran1 R, Ong B H, Wong H Y, Tan K B,Muhamad Rasat M 2012 Int. J. Electrochem. Sci. 711895
[3] Chang H J, Moon K P, Seong I W 2012 Appl. Phys.Lett. 100 262107
[4] Zhang T J, Huang H, Chen R 2011 Ferroelectrics 410137
[5] Cheng J G, Tang J, Meng X J, Guo S L, Chu J H 2001 J. Am. Ceram. Soc. 84 1421
[6] Zhang G Z, Jiang S L, Zeng Y K, Zhang Y Y, Zhang Q F, Yu F, Wang J 2011 Phys. Status Solidi A 208 11 699
[7] Friederich A, Kohler C, Nikfalazar M, Wiens A., Sazegar M, Jakoby R, Bauer W, Binder J R 2014 J. Eur. Ceram.Soc. 34 2925
[8] Schafranek R, Andre G, G. Balogh A, Enz T, Zheng Y L, Scheele P, Jakoby R, Klein A 2009 J. Eur. Ceram.Soc. 29 1433
[9] Zhang M W, Zhai J W, Shen B, Yao X 2011 J. Am.Ceram. Soc. 94 3883
[10] Masuda H, Fukuda K 1995 Science 268 1466
[11] Zhang Z, Xu Z M, Sun T Y, Xu H F, Chen C H, Peng 2014 Acta Phys. Sin. 63 018102 (in Chinese) [张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静2014 物理学报63 018102]
[12] Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛2010 物理学报59 5851]
[13] Xu C L, Li H, Zhao G Y, Li HL 2006 Mater. Lett. 60 2335
[14] Banerjee P, Perez I, Henn-Lecordier L, Bok Lee S, W. Rubloff Gary 2009 Nat. Nanotechnol. 4 292
[15] Yu J, Liao J X, Jin L, Wei X B, W P, WEI X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健,廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强2011 物理学报60 077701]
[16] Cui J W, Wu Y C, Wang Y, Zheng H M, Xu G Q, Zhang X Y 2012 Appl. Surf. Sci. 258 5305
[17] Katarzyna Osińska, Dionizy Czekaj 2013 J. Therm. Anal. Calorim. 113 69
[18] Ali N, Duan X F, Jiang Z T, Goh B M, Lamb R, Tadich A, Poinern G E J, Fawcett D, Chapman P, Singh P 2014 Appl. Surf. Sci. 289 560
[19] Qin F F, Zhang H, Wang C X, Zhang J J, Guo C 2014 Opt. Commun. 331 325
Catalog
Metrics
- Abstract views: 6876
- PDF Downloads: 262
- Cited By: 0