-
Studies on the dynamical stereochemistry of the titled reaction are carried out by the quasi-classical trajectory (QCT) method based on a new accurate 4A potential energy surface constructed by Abrahamsson and coworkers (Abrahamsson E Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400) at a collision energy of 0.06 eV. The distribution p(r) of the angle between k-j' and the angle distribution P(r in terms of k-k'-j' correlation have been calculated. Results indicate that the rotational angular momentum vector j' of CO is preferentially aligned perpendicular to k and also oriented with respect to the k-k' plane. Three polarization-dependent differential cross sections (2/)(d00/dt), (2/)(d20/dt), and (2/)(d22+/dt) have also been calculated. The preference of backward scattering is found from the results of (2/)(d00/dt). The behavior of (2/)(d20/dt) shows that the variation trend is opposite to that of (2/)(d00/dt), which indicates that j' is preferentially polarized along the direction perpendicular to k. The value of (2/)(d22/dt) is negative for all scattering angles, indicating the marked preference of product alignment along the y-axis. Furthermore, the influences of initial rotational and vibrational excitation on the reaction are shown and discussed. It is found that the initial vibrational excitation and rotational excitation have a larger influence on the alignment distribution of j' but a weaker effect on the orientation distribution of j' in the titled reaction. The influence of the initial vibrational excitation on the three polarization-dependent differential cross sections of product CO is stronger than that of the initial rotational excitation effect.
-
Keywords:
- stereodynamics /
- quasi-classical trajectory method /
- rotational excitation /
- vibrational excitation
[1] Boger G I, Sternberg A 2005 Astrophys. J. 632 302
[2] Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1
[3] Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417
[4] Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543
[5] Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525
[6] Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455
[7] Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180
[8] Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519
[9] Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501
[10] Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728
[11] Halvick P, Rayez J C 1989 Chem. Phys. 131 375
[12] Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579
[13] Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99
[14] Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613
[15] Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439
[16] Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400
[17] Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507
[18] Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705
[19] Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323
[20] Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517
[21] Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281
[22] Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115
[23] Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]
[24] Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197
[25] Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192
[26] Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 物理学报 62 023401]
[27] Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401
[28] Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309
[29] Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081
[30] Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402
[31] Wei Q 2015 Chin. Phys. Lett. 32 013101
[32] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[33] Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204
[34] Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699
[35] Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463
[36] Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463
[37] Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815
[38] Liu S L, Shi Y 2011 Chin. Phys. B 20 013404
[39] Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 物理学报 62 073105]
[40] Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[41] Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201
[42] Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301
[43] Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286
-
[1] Boger G I, Sternberg A 2005 Astrophys. J. 632 302
[2] Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1
[3] Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417
[4] Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543
[5] Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525
[6] Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455
[7] Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180
[8] Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519
[9] Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501
[10] Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728
[11] Halvick P, Rayez J C 1989 Chem. Phys. 131 375
[12] Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579
[13] Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99
[14] Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613
[15] Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439
[16] Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400
[17] Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507
[18] Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705
[19] Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323
[20] Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517
[21] Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281
[22] Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115
[23] Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]
[24] Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197
[25] Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192
[26] Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 物理学报 62 023401]
[27] Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401
[28] Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309
[29] Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081
[30] Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402
[31] Wei Q 2015 Chin. Phys. Lett. 32 013101
[32] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[33] Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204
[34] Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699
[35] Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463
[36] Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463
[37] Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815
[38] Liu S L, Shi Y 2011 Chin. Phys. B 20 013404
[39] Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 物理学报 62 073105]
[40] Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[41] Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201
[42] Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301
[43] Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286
Catalog
Metrics
- Abstract views: 5570
- PDF Downloads: 121
- Cited By: 0