-
Single quantum dots (QDs) always exhibit strong blinking in fluorescence intensity when they are on some inert substrates. The blinking activity is attributed to the photoinduced charging of QDs by electron transfer (ET) to trap states in QDs and the surrounding matrix, which has been considered as an undesirable property in many applications. Here, we use N-doped indium tin oxide (ITO) semiconductor nanoparticles to suppress fluorescence blinking activity of single CdSe/ZnS core/shell QDs. The fluorescence characteristics of single QDs in ITO and on SiO2 cover glass are measured by a laser scanning confocal fluorescence microscopy, respectively. It is found that the on-and off-state probability densities of QDs on different substrates both can be fit by a truncated power law. Blinking rates for single QDs on glass and in ITO are also calculated. By contrast, single QDs doped in ITO show that their blinking rate and fluorescence lifetime both decrease. The on-state probability density of single QDs in ITO is approximately two orders of magnitude higher than that of QDs on SiO2 cover glass. It means that single QDs doped in ITO have a longer time to be on-state. Because the Fermi level in QDs is lower than in ITO, when they are in contact, electrons in ITO will transfer to QDs. As a result, the equilibration of their Fermi levels leads to the formation of negatively charged QDs. These electrons fill in the holes of QDs shell and enhance the on-state probability of QDs. Fluorescence decays of single QDs on glass and in ITO are measured by TAC/MCA, and they can be fit by biexponential function. The two lifetime values correspond to the single exciton lifetime and biexciton lifetime of QDs, respectively. It is worth noting that the distribution of the amplitude weighted average lifetime for single QDs in ITO is approximately 41% of that for single QDs on SiO2 cover glass and its full width at half maximum (FWHM) is changed to 50%. For the conduction band potential of QDs is higher than that of ITO, which contributes to photoinduced interfacial electron transfer from QDs to ITO and leads to the increase of nonradiative transition. These indicate that ITO can reduce single exciton and biexciton lifetime of QDs. The study demonstrates that ITO can effectively suppress the blinking activity of QDs.
-
Keywords:
- single quantum dot /
- semiconductor nanomaterials /
- fluorescence blinking /
- fluorescence lifetime
[1] Kloepfer J A, Bradforth S E, Nadeau J L 2005 J. Phys. Chem. B 109 9996
[2] Sungwoo K, Hyuk Im S, Sang-Wook K 2013 Nanoscale 5 5205
[3] Sambur J B, Novet T, Parkinson1 B A 2010 Science 330 63
[4] Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]
[5] Bruchez Jr M, Moronne M, Gin P, Weiss S, Paul Alivisatos A 1998 Science 281 2013
[6] Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G 2008 Nat. Methods 5 695
[7] Dertinger T, Colyer R, Iyer G, Weiss R, Enderlein J 2009 Proc. Natl. Acad. Sci. 106 22287
[8] Peterson J J, Nesbitt D J 2009 Nano Lett. 9 338
[9] Galland C, Ghosh Y, Steinbrck A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203
[10] Kiraz A, Atatre M, Imamoğlu A 2004 Phys. Rev. A 69 032305
[11] Aldana J, Wang Y A, Peng X G 2001 J. Am. Chem. Soc. 123 8844
[12] Guo W Z, Li J J, Wang Y A, Peng X G 2003 J. Am. Chem. Soc. 125 3901
[13] Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545
[14] Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302 (in Chinese) [吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302]
[15] Nagao Y, Fujiwara H, Sasaki K 2014 J. Phys. Chem. C 118 20571
[16] Zhou X D, Zhang S F, Zhou S H 2015 Acta Phys. Sin. 64 167301 (in Chinese) [周小东, 张少锋, 周思华 2015 物理学报 64 167301]
[17] Hohng S, Ha T 2004 J. Am. Chem. Soc. 126 1324
[18] Schafer S, Wang Z, Kipp T, Mews A 2011 Phys. Rev. Lett. 107 137403
[19] Chiba T, Qi J, Fujiwara H, Sasaki K 2013 J. Phys. Chem. C 117 2507
[20] LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 Appl. Phys. 115 034306
[21] Li Y, Liu R W, Ma L, Fan S N, Li H, Hu S X, Li M 2015 Chin. Phys. B 24 078202
[22] Chang Y P, Tsai P Y, Lee H L, Lin K C 2013 Electroanalysis 25 1064
[23] Wu X Y, Yeow E K L 2010 Chem. Commun. 46 4390
[24] Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117
[25] Tang J, Marcus R A 2005 Phys. Rev. Lett. 95 107401
[26] Cheng H W, Yuan C T, Wang J S, Lin T N, Shen J L, Hung Y L, Tang J, Tseng F G 2014 J. Phys. Chem. C 118 18126
[27] Fisher B, Caruge J M, Zehnder D, Bawendi M G 2005 Phys. Rev. Lett. 94 087403
[28] Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419
[29] Inamdar S N, Ingole P P, Haram S K 2008 Chem. Phys. Chem. 9 2574
[30] Debnath T, Maity P, Banerjee T, Das A, Ghosh H N 2015 J. Phys. Chem. C 119 3522
[31] Zhang G F, Xiao L T, Chen R Y, Gao Y, Jia S T 2011 Phys. Chem. Chem. Phys. 13 13815
-
[1] Kloepfer J A, Bradforth S E, Nadeau J L 2005 J. Phys. Chem. B 109 9996
[2] Sungwoo K, Hyuk Im S, Sang-Wook K 2013 Nanoscale 5 5205
[3] Sambur J B, Novet T, Parkinson1 B A 2010 Science 330 63
[4] Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]
[5] Bruchez Jr M, Moronne M, Gin P, Weiss S, Paul Alivisatos A 1998 Science 281 2013
[6] Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G 2008 Nat. Methods 5 695
[7] Dertinger T, Colyer R, Iyer G, Weiss R, Enderlein J 2009 Proc. Natl. Acad. Sci. 106 22287
[8] Peterson J J, Nesbitt D J 2009 Nano Lett. 9 338
[9] Galland C, Ghosh Y, Steinbrck A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203
[10] Kiraz A, Atatre M, Imamoğlu A 2004 Phys. Rev. A 69 032305
[11] Aldana J, Wang Y A, Peng X G 2001 J. Am. Chem. Soc. 123 8844
[12] Guo W Z, Li J J, Wang Y A, Peng X G 2003 J. Am. Chem. Soc. 125 3901
[13] Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545
[14] Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302 (in Chinese) [吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302]
[15] Nagao Y, Fujiwara H, Sasaki K 2014 J. Phys. Chem. C 118 20571
[16] Zhou X D, Zhang S F, Zhou S H 2015 Acta Phys. Sin. 64 167301 (in Chinese) [周小东, 张少锋, 周思华 2015 物理学报 64 167301]
[17] Hohng S, Ha T 2004 J. Am. Chem. Soc. 126 1324
[18] Schafer S, Wang Z, Kipp T, Mews A 2011 Phys. Rev. Lett. 107 137403
[19] Chiba T, Qi J, Fujiwara H, Sasaki K 2013 J. Phys. Chem. C 117 2507
[20] LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 Appl. Phys. 115 034306
[21] Li Y, Liu R W, Ma L, Fan S N, Li H, Hu S X, Li M 2015 Chin. Phys. B 24 078202
[22] Chang Y P, Tsai P Y, Lee H L, Lin K C 2013 Electroanalysis 25 1064
[23] Wu X Y, Yeow E K L 2010 Chem. Commun. 46 4390
[24] Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117
[25] Tang J, Marcus R A 2005 Phys. Rev. Lett. 95 107401
[26] Cheng H W, Yuan C T, Wang J S, Lin T N, Shen J L, Hung Y L, Tang J, Tseng F G 2014 J. Phys. Chem. C 118 18126
[27] Fisher B, Caruge J M, Zehnder D, Bawendi M G 2005 Phys. Rev. Lett. 94 087403
[28] Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419
[29] Inamdar S N, Ingole P P, Haram S K 2008 Chem. Phys. Chem. 9 2574
[30] Debnath T, Maity P, Banerjee T, Das A, Ghosh H N 2015 J. Phys. Chem. C 119 3522
[31] Zhang G F, Xiao L T, Chen R Y, Gao Y, Jia S T 2011 Phys. Chem. Chem. Phys. 13 13815
Catalog
Metrics
- Abstract views: 6991
- PDF Downloads: 159
- Cited By: 0