Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extraction efficiency enhancement of single InAs quantum dot emission through light scattering on the Au nanoparticles

Su Dan Dou Xiu-Ming Ding Kun Wang Hai-Yan Ni Hai-Qiao Niu Zhi-Chuan Sun Bao-Quan

Citation:

Extraction efficiency enhancement of single InAs quantum dot emission through light scattering on the Au nanoparticles

Su Dan, Dou Xiu-Ming, Ding Kun, Wang Hai-Yan, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Single semiconductor quantum dots (QDs) have been considered as the promising solid-state single photon sources. To obtain bright quantum sources, the key issue is to enhance extraction efficiency of the QD emission, which is challenging since QDs normally emit isotropically in a high refractive index material. In this article, we investigate the influence of Au nanoparticles on the QD photoluminescence (PL) extraction efficiency based on the techniques of optically positioned QDs and single QD emission detection. The InAs QD samples studied are grown using the molecular beam epitaxy on a (001) GaAs substrate. The sample consists of, in sequence, a 200 nm GaAs buffer layer, a 100 nm AlAs sacrificed layer, a 30 nm GaAs, a QD layer, and a 100 nm GaAs cap layer. The QD sample is mounted in a cryostat cooled down to 5 K, and excited by illumination of a 640 nm diode laser (CW or pulsed with a repetition frequency of 80 MHz). Excitation laser beam is focused to an approximately 2 μm spot on the sample using a microscope objective (NA : 0.5) which is mounted on a nanocube XYZ piezo nanopositioning stage with a scanning range of 100×100×100 μm3. The QD PL is collected using the same objective and measured using a 0.5 m focal length monochromator equipped with a silicon charge-coupled device (CCD). The PL decay measurements are performed using a silicon avalanche photodiode (APD) and a time-correlated single-photon counting (TCSPC) board.#br#In order to study the influence of different environments surrounding the QDs on the spontaneous emission rate and the extraction efficiency, the same QD emissions are measured under the conditions that: (1) A typical QD is at first chosen and optically positioned and then its emission is measured. (2) A GaAs layer containing the QDs is lifted off from the as-grown sample by an AlAs sacrificed layer and placed on the Au film with or without Au nanoparticles. (3) Optical measurements are carried out to obtain the QD emission intensity. This technique enables us to compare the same QD emission intensity for the as-grown QD sample, which is placed on the Au film or on the Au nanoparticles.#br#In summary, it is found that the measured QD emission intensity increases up to 6 times that of the original for the QD placed on the Au nanoparticles, otherwise it is only doubled for the QD placed on the Au film. The time-resolved PL measurements show that the QDs have nearly the same decay time for the QDs in different environments, implying that the QD spontaneous emission rate has not been changed. Therefore, the enhanced PL is due to the increase of extraction efficiency. The physical mechanism underlying the Au nanoparticles-induced PL enhancement is attributed to the trapped QD emission light within the sample and scattered again by Au nanoparticles and collected by the microscopy objective.
      Corresponding author: Sun Bao-Quan, bqsun@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grand No. 11204297)
    [1]

    Chang J, Kuga Y, Mora-Seró I, Toyoda T, Ogomi Y, Hayase S, Bisquert J, Shen Q 2015 Nanoscale 7 5446

    [2]

    Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C, Nozik A J 2010 Adv. Mater. 22 3704

    [3]

    Wang H, Xu L, Zhang R, Ge Z, Zhang W, Xu J, Ma Z, Chen K 2015 Nanoscale Research Letters 10 128

    [4]

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801 (in Chinese) [高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801]

    [5]

    Matsumoto K, Zhang X X, Kishikawa J, Shimomura K 2015 Jpn. J. Appl. Phys. 54 030208

    [6]

    Shields A J 2007 Nat. Photon. 1 215

    [7]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [8]

    Nowak A K, Portalupi S L, Giesz V, Gazzano O, DalSavio C, Braun P F, Karrai K, Arnold C, Lanco L, Sagnes I, Lemaître A, Senellart P 2014 Nat. Commun.5 3240

    [9]

    Badolato A, Hennessy K, Atatre M, Dreiser J, Hu E, Petroff P M, Imamoğlu A 2005 Science 308 1158

    [10]

    Santori C, Fattal D, Vučković J, Solomon G S, Yamamoto Y 2002 Nature 419 594

    [11]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835

    [12]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802

    [13]

    Shahin S, Gangopadhyay P, Norwood R A 2012 Appl. Phys. Lett. 101 053109

    [14]

    Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O, Heeger A J 2011 Angew. Chem. 123 5633

    [15]

    Fang P P, Lu X H, Liu H, Tong Y X 2015 Trends in Analytical Chemistry 66 103

    [16]

    Pfeiffer M, Lindfors K, Atkinson P, Rastelli A, Schmidt O G, Giessen H, Lippitz M 2012 Phys. Status Solidi B 249 678

    [17]

    Liang H Y, Li Z P, Wang W Z, Wu Y S, Xu H X 2009 Adv. Mater. 21 4614

    [18]

    Schaffernak G, Gruber C, Krenn J R, Krug M K, Gašpari M, Belitsch M, Hohenau A 2015 Proc. of SPIE 9450 94501S-1

    [19]

    Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C, Sun B Q 2014 J. Appl. Phys. 115 123104

  • [1]

    Chang J, Kuga Y, Mora-Seró I, Toyoda T, Ogomi Y, Hayase S, Bisquert J, Shen Q 2015 Nanoscale 7 5446

    [2]

    Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C, Nozik A J 2010 Adv. Mater. 22 3704

    [3]

    Wang H, Xu L, Zhang R, Ge Z, Zhang W, Xu J, Ma Z, Chen K 2015 Nanoscale Research Letters 10 128

    [4]

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801 (in Chinese) [高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801]

    [5]

    Matsumoto K, Zhang X X, Kishikawa J, Shimomura K 2015 Jpn. J. Appl. Phys. 54 030208

    [6]

    Shields A J 2007 Nat. Photon. 1 215

    [7]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [8]

    Nowak A K, Portalupi S L, Giesz V, Gazzano O, DalSavio C, Braun P F, Karrai K, Arnold C, Lanco L, Sagnes I, Lemaître A, Senellart P 2014 Nat. Commun.5 3240

    [9]

    Badolato A, Hennessy K, Atatre M, Dreiser J, Hu E, Petroff P M, Imamoğlu A 2005 Science 308 1158

    [10]

    Santori C, Fattal D, Vučković J, Solomon G S, Yamamoto Y 2002 Nature 419 594

    [11]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835

    [12]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802

    [13]

    Shahin S, Gangopadhyay P, Norwood R A 2012 Appl. Phys. Lett. 101 053109

    [14]

    Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O, Heeger A J 2011 Angew. Chem. 123 5633

    [15]

    Fang P P, Lu X H, Liu H, Tong Y X 2015 Trends in Analytical Chemistry 66 103

    [16]

    Pfeiffer M, Lindfors K, Atkinson P, Rastelli A, Schmidt O G, Giessen H, Lippitz M 2012 Phys. Status Solidi B 249 678

    [17]

    Liang H Y, Li Z P, Wang W Z, Wu Y S, Xu H X 2009 Adv. Mater. 21 4614

    [18]

    Schaffernak G, Gruber C, Krenn J R, Krug M K, Gašpari M, Belitsch M, Hohenau A 2015 Proc. of SPIE 9450 94501S-1

    [19]

    Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C, Sun B Q 2014 J. Appl. Phys. 115 123104

  • [1] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] Zhang Yu-Jia, Lu Min-Jian, Li Yan, Wei Hao-Yun. Second harmonic scattering multipole analysis of ligand-decorated gold nanoparticles. Acta Physica Sinica, 2022, 71(17): 170301. doi: 10.7498/aps.71.20220669
    [3] Xu Qing-Lin, Xiang Ting, Xu Wei, Li Ting, Wu Xiao-Yan, Li Wei, Qiu Xue-Jun, Chen Ping. Gold nanoparticals modified indium tin oxide anode for high performance red perovskite light emitting diodes. Acta Physica Sinica, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [4] Shen Yu-Tian,  Meng Sheng. Water photosplitting: Atomistic mechanism and quantum dynamics. Acta Physica Sinica, 2019, 68(1): 018202. doi: 10.7498/aps.68.20181312
    [5] Zhang Yan, Zhao Yue-Feng, Zhao Li-Na, Zheng Li-Ren, Gao Yuan-Mei. Special scattering in photorefractive crystal LiNbO3:Fe. Acta Physica Sinica, 2017, 66(8): 084206. doi: 10.7498/aps.66.084206
    [6] Jiang Ling, Zhang Chang-Neng, Ding Yong, Mo Li-E, Huang Yang, Hu Lin-Hua, Dai Song-Yuan. Characteristics of charge transport in nano-sized TiO2 particles/submicron spheres multilayer thin-film electrode. Acta Physica Sinica, 2015, 64(1): 017301. doi: 10.7498/aps.64.017301
    [7] Zhang Jin-Bi, Ding Lei, Wang Ying-Ping, Zheng Hai-Yang, Fang Li. Shape classification of single aerosol particle using near-forward optical scattering patterns calculation. Acta Physica Sinica, 2015, 64(5): 054202. doi: 10.7498/aps.64.054202
    [8] Wang Hai-Yan, Dou Xiu-Ming, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Photoluminescence from plasmon-enhanced single InAs quantum dots. Acta Physica Sinica, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [9] Zheng Li-Si, Feng Miao, Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles. Acta Physica Sinica, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [10] Sun Xian-Ming, Wang Hai-Hua, Shen Jin, Wang Shu-Jun. Scattering of polarized light by randomly oriented coated spheroidal particle. Acta Physica Sinica, 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [11] Zhang Qi-Xing, Li Yao-Dong, Deng Xiao-Jiu, Zhang Yong-Ming. Experimental determination of scattering matrix of fire smoke particles at 532 nm. Acta Physica Sinica, 2011, 60(8): 084216. doi: 10.7498/aps.60.084216
    [12] Chang Xiu-Ying, Dou Xiu-Ming, Sun Bao-Quan, Xiong Yong-Hua, Ni Hai-Qiao, Niu Zhi-Chuan. Tuning photoluminescence of single InAs quantum dot by electric field. Acta Physica Sinica, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [13] Sun Xian-Ming, Shen Jin, Wei Pei-Yu. Light scattering by a spheroid particle with many densely packed inclusions. Acta Physica Sinica, 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [14] Li Jun, Zhang Kai-Wang, Meng Li-Jun, Liu Wen-Liang, Zhong Jian-Xin. Formation and structure transition of gold nanoparticles on surface of carbon nanotube. Acta Physica Sinica, 2008, 57(1): 382-386. doi: 10.7498/aps.57.382
    [15] Wang Kai, Yang Guang, Long Hua, Li Yu-Hua, Dai Neng-Li, Lu Pei-Xiang. Fabrication and optical properties of Au nanoparticle array. Acta Physica Sinica, 2008, 57(6): 3862-3867. doi: 10.7498/aps.57.3862
    [16] Sun Xian-Ming, Han Yi-Ping. Absorption and scattering of light by ice-water mixed clouds. Acta Physica Sinica, 2006, 55(2): 682-687. doi: 10.7498/aps.55.682
    [17] Wu Peng, Han Yi-Ping, Liu De-Fang. Computation of Gaussian beam scattering for larger particle. Acta Physica Sinica, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [18] Zeng Hui-Dan, Qu Shi-Liang, Jiang Xiong-Wei, Qiu Jian-Rong, Zhu Cong-Shan, Gan F u-Xi. A study on the photo-induced crystallization properties in Au+-doped silicate glasses. Acta Physica Sinica, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
    [19] Ding Ying-Chun, Lv Zhi-Wei, He Wei-Ming. The influence of the ratio of seed to pump energy on Brillouin amplification*. Acta Physica Sinica, 2002, 51(12): 2767-2771. doi: 10.7498/aps.51.2767
    [20] QI DONG-PING, LIU DE-LI, TENG SHU-YUN, ZHANG NING-YU, CHENG CHUAN-FU. MORPHOLOGICAL ANALYSIS BY ATOMIC FORCE MICROSCOPE AND LIGHT SCATTERING STUDY FOR RANDOM SCATTERING SCREENS. Acta Physica Sinica, 2000, 49(7): 1260-1266. doi: 10.7498/aps.49.1260
Metrics
  • Abstract views:  6020
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2015
  • Accepted Date:  15 July 2015
  • Published Online:  05 December 2015

/

返回文章
返回