Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of clustering behaviors in granular gases

Wang Hua Chen Qiong Wang Wen-Guang Hou Mei-Ying

Citation:

Experimental study of clustering behaviors in granular gases

Wang Hua, Chen Qiong, Wang Wen-Guang, Hou Mei-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Granular materials are widely spread in nature and in industry. Owing to the inelastic collisions between particles and frictions among particles, granular systems are dissipative in nature. This intrinsic dissipative nature causes local clustering in granular gas systems. This is a unique phenomenon compared with the molecular gases. Understanding and predicting the condition and parameter values when this phenomenon happens will be helpful for us to gain knowledge of the conditions of clustering or pattern formations in non-equilibrium complex systems. The clustering phenomenon in granular gas is analyzed using phase-separation modeling of van der Waals-like molecules. The results from the model are verified by molecular dynamics numerical simulations. However, due to the influence of the gravity, experimental verification is difficult in laboratory. In this work, we perform an experiment in micro-gravity environment provided by the drop tower of National Microgravity Laboratory Chinese Academy of Science. In the experiment we for the first time observe the phase-separation clustering phenomenon. Comparing the observation condition with the model prediction, we are able to indirectly obtain the restitution coefficients of particles used in the experiment. A model calculation for the spinodal regime under experimental conditions is performed for possible particle restitution coefficients, and a comparison with the experimental observation allows us to justify the values of the restitution coefficients. It is found that the coefficient is larger for bigger particles. For d=2.5mm titanium particles, the restitution coefficient is higher than 0.8; for d=1mm titanium particles, the restitution coefficient is about 0.8, and for d=0.5mm titanium particles, the restitution coefficient is between 0.6 and 0.8. This useful result can be essential for comparing experimental observation with the theoretical and the numerical results, and is crucial to the success in the SJ-10 satellite experiments.
      Corresponding author: Hou Mei-Ying, mayhou@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program-SJ-10 of the Chinese Academy of Sciences (Grant No. XDA04020200), the National Natural Science Foundation of China (Grant Nos. 11274354, 11474326), and the Special Fund for Earthquake Research of China (Grant No. 201208011).
    [1]

    Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论 (北京: 科学出版社) 第73页]

    [2]

    Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259

    [3]

    Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57

    [4]

    Grasselliy Y, Bossis G, Goutallier G 2009 Europhys. Lett. 86 60007

    [5]

    Aranson I S, Tsimring L S 2006 Rev. Mod. Phys. 78 641

    [6]

    Pschel T, Schwager T 2005 Computational Granular Dynamics: Models and Algorithms (Berlin: Springer)

    [7]

    McNamara S, Young W R 1994 Phys. Rev. E 50 28

    [8]

    Argentina M, Clerc M G, Soto R 2002 Phys. Rev. Lett. 89 044301

    [9]

    Cartes C, Clerc M G, Soto R 2004 Phys. Rev. E 70 031302

    [10]

    Khain E, Meerson B 2002 Phys. Rev. E 66 021306

    [11]

    Khain E, Meerson B, Sasorov P V 2004 Phys. Rev. E 70 051310

    [12]

    Livne E, Meerson B, Sasorov P V 2002 Phys. Rev. E 66 050301(R)

    [13]

    Diez-Minguito M, Meerson B 2007 Phys. Rev. E 75 011304

    [14]

    Hou M Y 2008 Chin. J. Space Sci. 28 1 (in Chinese) [厚美瑛 2008 空间科学学报 28 1]

    [15]

    Hou M Y 2008 Physics 37 729 (in Chinese) [厚美瑛 2008 物理 37 729]

    [16]

    Liu R, Li Y C, Hou M Y 2008 Acta Phys. Sin. 57 4660 (in Chinese) [刘锐, 李寅阊, 厚美瑛 2008 物理学报 57 4660]

    [17]

    Liu R, Li Y C, Hou M Y, Meerson B 2007 Phys. Rev. E 75 061304

    [18]

    Hu W R, Zhao J F, Long M et. al. 2014 Microgravity Sci. Technol. 26 159

    [19]

    Qi N M, Zhang W H, Gao J Z, Huo M Y 2011 China Academic Journal Electronic Publishing House 29 95 (in Chinese) [齐乃明, 张文辉, 高九州, 霍明英 2011 中国学术期刊电子出版社 29 95]

    [20]

    Jenkins J T, Richman M W 1985 Arch. Rat. Mech. Anal. 87 355

    [21]

    Wei M, Wan S X, Yao K Z, Xie J C 2007 China Academic Journal Electronic Publishing House 4 1 (in Chinese) [韦明, 万士昕, 姚康庄, 谢京昌 2007 中国学术期刊电子出版社 4 1]

    [22]

    Brey J J, Dufty J W, Kim C S 1998 Phys. Rev. E 58 4638

    [23]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

  • [1]

    Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论 (北京: 科学出版社) 第73页]

    [2]

    Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259

    [3]

    Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57

    [4]

    Grasselliy Y, Bossis G, Goutallier G 2009 Europhys. Lett. 86 60007

    [5]

    Aranson I S, Tsimring L S 2006 Rev. Mod. Phys. 78 641

    [6]

    Pschel T, Schwager T 2005 Computational Granular Dynamics: Models and Algorithms (Berlin: Springer)

    [7]

    McNamara S, Young W R 1994 Phys. Rev. E 50 28

    [8]

    Argentina M, Clerc M G, Soto R 2002 Phys. Rev. Lett. 89 044301

    [9]

    Cartes C, Clerc M G, Soto R 2004 Phys. Rev. E 70 031302

    [10]

    Khain E, Meerson B 2002 Phys. Rev. E 66 021306

    [11]

    Khain E, Meerson B, Sasorov P V 2004 Phys. Rev. E 70 051310

    [12]

    Livne E, Meerson B, Sasorov P V 2002 Phys. Rev. E 66 050301(R)

    [13]

    Diez-Minguito M, Meerson B 2007 Phys. Rev. E 75 011304

    [14]

    Hou M Y 2008 Chin. J. Space Sci. 28 1 (in Chinese) [厚美瑛 2008 空间科学学报 28 1]

    [15]

    Hou M Y 2008 Physics 37 729 (in Chinese) [厚美瑛 2008 物理 37 729]

    [16]

    Liu R, Li Y C, Hou M Y 2008 Acta Phys. Sin. 57 4660 (in Chinese) [刘锐, 李寅阊, 厚美瑛 2008 物理学报 57 4660]

    [17]

    Liu R, Li Y C, Hou M Y, Meerson B 2007 Phys. Rev. E 75 061304

    [18]

    Hu W R, Zhao J F, Long M et. al. 2014 Microgravity Sci. Technol. 26 159

    [19]

    Qi N M, Zhang W H, Gao J Z, Huo M Y 2011 China Academic Journal Electronic Publishing House 29 95 (in Chinese) [齐乃明, 张文辉, 高九州, 霍明英 2011 中国学术期刊电子出版社 29 95]

    [20]

    Jenkins J T, Richman M W 1985 Arch. Rat. Mech. Anal. 87 355

    [21]

    Wei M, Wan S X, Yao K Z, Xie J C 2007 China Academic Journal Electronic Publishing House 4 1 (in Chinese) [韦明, 万士昕, 姚康庄, 谢京昌 2007 中国学术期刊电子出版社 4 1]

    [22]

    Brey J J, Dufty J W, Kim C S 1998 Phys. Rev. E 58 4638

    [23]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

  • [1] Xing He-Wei, Chen Zhan-Xiu, Yang Li, Su Yao, Li Yuan-Hua, Huhe Cang. Molecular dynamics simulation of effect of non-condensable gases on heat transfer of water molecule flow in nanochannels. Acta Physica Sinica, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [2] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [3] Chen Ke-Ping, Lü Peng, Peng Wang. Liquid-solid phase transition of Cu-Zr eutectic alloy under microgravity condition. Acta Physica Sinica, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [4] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [5] Chen Yan-Pei, Pierre Evesque, Hou Mei-Ying. Experimental study on the local equation of state for vibrated granular gases. Acta Physica Sinica, 2013, 62(16): 164503. doi: 10.7498/aps.62.164503
    [6] Xu Sheng-Hua, Zhou Hong-Wei, Wang Cai-Xia, Wang Lin-Wei, Sun Zhi-Wei. Experimental study on the capillary flow in tubes of different shapes under microgravity condition. Acta Physica Sinica, 2013, 62(13): 134702. doi: 10.7498/aps.62.134702
    [7] Li Yong-Qiang, Zhang Chen-Hui, Liu Ling, Duan Li, Kang Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity. Acta Physica Sinica, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [8] Han Xiao-Jing, Wang Yin, Lin Zheng-Zhe, Zhang Wen-Xian, Zhuang Jun, Ning Xi-Jing. Theoretical prediction of the growth probabilities for cluster isomers. Acta Physica Sinica, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [9] Li Yin-Chang, Zhang Zhao-Bu, Tu Hong-En, Liu Rui, Hu Hai-Yun, Hou Mei-Ying. The flux profile of granular gas in compartmentalized system. Acta Physica Sinica, 2009, 58(8): 5857-5863. doi: 10.7498/aps.58.5857
    [10] Yang Ming, Liu Jian-Sheng, Cai Yi, Wang Wen-Tao, Wang Cheng, Ni Guo-Quan, Li Ru-Xin, Xu Zhi-Zhan. Diagnosis and investigation of the formation of low density and large sized clusters. Acta Physica Sinica, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [11] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [12] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [13] Huang De-Cai, Sun Gang, Hou Mei-Ying, Lu Kun-Quan. The effect of the granule velocity on the dilute-dense flow transition in granular system. Acta Physica Sinica, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [14] Xiao Xue, Li Hai-Yang, Luo Xiao-Lin, Niu Dong-Mei, Wen Li-Hua, Wang Bin, Liang Feng, Hou Ke-Yong, Zhang Na-Zhen. Cluster-assisted multiple ionization of CS2 by intense nanosecond laser beam. Acta Physica Sinica, 2005, 54(11): 5098-5103. doi: 10.7498/aps.54.5098
    [15] Yao Wen-Jing, Yang Chun, Han Xiu-Jun, Chen Min, Wei Bing-Bo, Guo Zeng-Yuan. Rapid dendritic growth in an undercooled Ni-Cu alloy under the microgravity condition. Acta Physica Sinica, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
    [16] HUO CHONG-RU, ZHU ZHEN-HE, GE PEI-WEN, CHEN DONG. THE STABILITY OF THE CRYSTAL GROWTH FACE IN A MODEL FOR CRYSTAL GROWTH FROM SOLUTION UNDER MICROGRAVITY . Acta Physica Sinica, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [17] WANG CHAO-YING, ZHAI GUANG-JIE, WU LAN-SHENG, MAI ZHEN-HONG, LI HONG, ZHANG HAI -FENG, DING BING-ZHE. EFFECT OF GRAVITY ON THE WETTING BEHAVIOR OF MOLTEN GaSb DROP. Acta Physica Sinica, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
    [18] JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN, LI MAO-ZI. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅲ ). Acta Physica Sinica, 2000, 49(12): 2502-2506. doi: 10.7498/aps.49.2502
    [19] JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN, LI MAO-ZI. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅱ ). Acta Physica Sinica, 2000, 49(12): 2498-2501. doi: 10.7498/aps.49.2498
    [20] JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN, LI MAO-ZI. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅰ ). Acta Physica Sinica, 2000, 49(12): 2494-2497. doi: 10.7498/aps.49.2494
Metrics
  • Abstract views:  7567
  • PDF Downloads:  411
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2015
  • Accepted Date:  27 September 2015
  • Published Online:  05 January 2016

/

返回文章
返回