Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synchronous behavior of a rotor-pendulum system

Fang Pan Hou Yong-Jun Zhang Li-Ping Du Ming-Jun Zhang Meng-Yuan

Citation:

Synchronous behavior of a rotor-pendulum system

Fang Pan, Hou Yong-Jun, Zhang Li-Ping, Du Ming-Jun, Zhang Meng-Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Rotor-pendulum systems are widely applied to aero-power plants, mining screening machineries, parallel robots, and other high-speed rotating equipment. However, the investigation for synchronous behavior (the computation for stable phase difference between the rotors) of a rotor-pendulum system has been reported very little. The synchronous behavior usually affects the performance precision and quality of a mechanical system. Based on the special background, a simplified physical model for a rotor-pendulum system is introduced. The system consists of a rigid vibrating body, a rigid pendulum rod, a horizontal spring, a torsion spring, and two unbalanced rotors. The vibrating body is elastically supported via the horizontal spring. One of unbalanced rotors in the system is directly mounted in the vibrating body, and the other is fixed at the end of the pendulum rod connected with the vibrating body by the torsion spring. In addition, the rotors are actuated with the identical induction motors. In this paper, we investigate the synchronous state of the system based on Poincar method, which further reveals the essential mechanism of synchronization phenomenon of this system. To determine the synchronous state of the system, the following computation technologies are implemented. Firstly, the dynamic equation of the system is derived based on the Lagrange equation with considering the homonymous and reversed rotation of the two rotors, then the equation is converted into a dimensionless equation. Further, the dimensionless equation is decoupled by the Laplace method, and the approximated steady solution and coupling coefficient of each degree of freedom are deduced. Afterwards, the balanced equation and the stability criterion of the system are acquired. Only should the values of physical parameters of the system satisfy the balanced equation and the stability criterion, the rotor-pendulum system can implement the synchronous operation. According to the theoretical computation, we can find that the spring stiffness, the installation title angle of the pendulum rod, and the rotation direction of the rotors have large influences on the existence and stability of the synchronous state in the coupling system. Meanwhile, the critical point of synchronization of the system can lead to no solution of the phase difference between the two rotors, which results in the dynamic characteristics of the system being chaotic. Finally, computer simulations are preformed to verify the correctness of the theoretical computations, and the results of theoretical computation are in accordance with the computer simulations.
      Corresponding author: Hou Yong-Jun, yongjunhou@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51074132) and the Key Project of Talent Engineering of Sichuan, China (Grant No. 2016RZ0059).
    [1]

    Blekhman I I 1988 Synchronization in Science and Technology (New York: ASME Press)

    [2]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization, an Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)

    [3]

    Arenas A, Albert D G, Kurths J, Moreno Y, Zhou C S 2008 Phys. Rep. 469 93

    [4]

    Li Y S, L L, Liu Y, Liu S, Yan B B, Chang H, Zhou J N 2013 Acta Phys. Sin. 62 020513 (in Chinese) [李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠 2013 物理学报 62 020513]

    [5]

    Yuan W J, Zhou C S 2011 Phys. Rev.E 84 016116

    [6]

    Yu H J, Liu Y Z 2005 Acta Phys. Sin. 54 3029 (in Chinese) [于洪洁, 刘延柱 2005 物理学报 54 3029]

    [7]

    Qin W Y, Yang Y F, Wang H J, Ren X M 2008 Acta Phys. Sin. 57 2068 (in Chinese) [秦卫阳, 杨永锋, 王红瑾, 任兴民 2008 物理学报 57 2068]

    [8]

    Pea R J, Aihara K, Fey R H B, Nijmeijer H 2014 Physica D 270 11

    [9]

    Jovanovic V, Koshkin S 2012 J. Soun. Vib. 331 2887

    [10]

    Kapitaniak M, Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2014 Phy. Rep. 541 1

    [11]

    Dilo R 2014 Eur. Phys. J.: Spec. Top. 223 665

    [12]

    Marcheggiani L, Chacn R, Lenci S 2014 Eur. Phys. J.: Spec. Top. 223 729

    [13]

    Wen B C, Fan J, Zhao C Y, Xiong W L 2009 Synchronization and Controled Sychronization in Engineering (Beijing: Science Press)

    [14]

    Zhao C Y, Zhang Y M, Zhang X L 2010 Chin. Phys. B 19 030301

    [15]

    Zhang X L, Wen B C, Zhao C Y 2012 Acta Mech. Sin. 28 1424

    [16]

    Sperling L, Ryzhik B, Linz C, Duckstein H 2000 Math. Comput. Simulat. 58 351

    [17]

    Balthazar J M, Felix J L P, Reyolando M L R F 2004 J. Vib. Control. 10 1739

    [18]

    Balthazar J M, Felix J L P, Reyolando M L R F 2005 Appl. Math. Comput. 164 615

    [19]

    Djanan A A N, Nbendjo B R N, Woafo P 2014 Eur. Phys. J.: Spec. Top. 223 813

    [20]

    Lacarbonara W, Arvin H, Bakhtiari-Nejad F 2012 Nonlinear Dyn. 70 659

    [21]

    Stoykov S, Ribeiro P 2013 Finite Elem. Anal. Design. 65 76

    [22]

    Warminski J, Szmit Z, Latalski J 2014 Eur. Phys. J.: Spec. Top. 223 827

    [23]

    Andreas M, Peter M 2007 Multibody Syst. Dyn. 18 259

    [24]

    Hou Y J, Zhang Z L China Patent 201110115274 [2012-12-26]

    [25]

    Fang P, Hou Y J, Yang Q M, Chen Y 2014 J. Vibroeng. 16 2188

  • [1]

    Blekhman I I 1988 Synchronization in Science and Technology (New York: ASME Press)

    [2]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization, an Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)

    [3]

    Arenas A, Albert D G, Kurths J, Moreno Y, Zhou C S 2008 Phys. Rep. 469 93

    [4]

    Li Y S, L L, Liu Y, Liu S, Yan B B, Chang H, Zhou J N 2013 Acta Phys. Sin. 62 020513 (in Chinese) [李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠 2013 物理学报 62 020513]

    [5]

    Yuan W J, Zhou C S 2011 Phys. Rev.E 84 016116

    [6]

    Yu H J, Liu Y Z 2005 Acta Phys. Sin. 54 3029 (in Chinese) [于洪洁, 刘延柱 2005 物理学报 54 3029]

    [7]

    Qin W Y, Yang Y F, Wang H J, Ren X M 2008 Acta Phys. Sin. 57 2068 (in Chinese) [秦卫阳, 杨永锋, 王红瑾, 任兴民 2008 物理学报 57 2068]

    [8]

    Pea R J, Aihara K, Fey R H B, Nijmeijer H 2014 Physica D 270 11

    [9]

    Jovanovic V, Koshkin S 2012 J. Soun. Vib. 331 2887

    [10]

    Kapitaniak M, Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2014 Phy. Rep. 541 1

    [11]

    Dilo R 2014 Eur. Phys. J.: Spec. Top. 223 665

    [12]

    Marcheggiani L, Chacn R, Lenci S 2014 Eur. Phys. J.: Spec. Top. 223 729

    [13]

    Wen B C, Fan J, Zhao C Y, Xiong W L 2009 Synchronization and Controled Sychronization in Engineering (Beijing: Science Press)

    [14]

    Zhao C Y, Zhang Y M, Zhang X L 2010 Chin. Phys. B 19 030301

    [15]

    Zhang X L, Wen B C, Zhao C Y 2012 Acta Mech. Sin. 28 1424

    [16]

    Sperling L, Ryzhik B, Linz C, Duckstein H 2000 Math. Comput. Simulat. 58 351

    [17]

    Balthazar J M, Felix J L P, Reyolando M L R F 2004 J. Vib. Control. 10 1739

    [18]

    Balthazar J M, Felix J L P, Reyolando M L R F 2005 Appl. Math. Comput. 164 615

    [19]

    Djanan A A N, Nbendjo B R N, Woafo P 2014 Eur. Phys. J.: Spec. Top. 223 813

    [20]

    Lacarbonara W, Arvin H, Bakhtiari-Nejad F 2012 Nonlinear Dyn. 70 659

    [21]

    Stoykov S, Ribeiro P 2013 Finite Elem. Anal. Design. 65 76

    [22]

    Warminski J, Szmit Z, Latalski J 2014 Eur. Phys. J.: Spec. Top. 223 827

    [23]

    Andreas M, Peter M 2007 Multibody Syst. Dyn. 18 259

    [24]

    Hou Y J, Zhang Z L China Patent 201110115274 [2012-12-26]

    [25]

    Fang P, Hou Y J, Yang Q M, Chen Y 2014 J. Vibroeng. 16 2188

  • [1] Lei Zhao-Kang, Wu Yao-Rong, Huang Chen-Yang, Mo Run-Yang, Shen Zhuang-Zhi, Wang Cheng-Hui, Guo Jian-Zhong, Lin Shu-Yu. Stability analysis of ring-like cavitation bubble cluster structure in standing wave field. Acta Physica Sinica, 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [2] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [3] Li Xiu-Ping, Wang Shan-Jin, Chen Qiong, Luo Shi-Yu. Parametric excitation and stability of crystalline undulator radiation. Acta Physica Sinica, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [4] Lu Yan-Ling, Jiang Guo-Ping, Song Yu-Rong. Stability and bifurcation of epidemic spreading on adaptive network. Acta Physica Sinica, 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [5] Wang Can-Jun, Li Jiang-Cheng, Mei Dong-Cheng. Effect of noises on the stability of a metapopulation. Acta Physica Sinica, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [6] Zhang Juan, Zhou Zhi-Gang, Shi Yu-Ren, Yang Hong-Juan, Duan Wen-Shan. The stability of solitay wave solution to a modified Kadomtsev-Petviashvili equation. Acta Physica Sinica, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [7] Liu Mou-Bin, Chang Jian-Zhong. Particle distribution and numerical stability in smoothed particle hydrodynamics method. Acta Physica Sinica, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [8] He Xue-Jun, Zhang Liang-Xin, Ren Ai-Di. The study of stability and bifurcation of highline cable of alongside replenishment system. Acta Physica Sinica, 2010, 59(5): 3088-3092. doi: 10.7498/aps.59.3088
    [9] Wang Xiao-Juan, Gong Zhi-Qiang, Zhou Lei, Zhi Rong. Analysis of the stability of temperature networks (part Ⅰ)——The influence of extreme events. Acta Physica Sinica, 2009, 58(9): 6651-6658. doi: 10.7498/aps.58.6651
    [10] Luo Song-Jiang, Qiu Shui-Sheng, Luo Kai-Qing. Research on the stability of complexity of chaos-based pseudorandom sequence. Acta Physica Sinica, 2009, 58(9): 6045-6049. doi: 10.7498/aps.58.6045
    [11] Shi Pei-Ming, Jiang Jin-Shui, Liu Bin. Stability and approximate solution of a relative-rotation nonlinear dynamical system with coupled terms. Acta Physica Sinica, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [12] Xue Yun, Liu Yan-Zhu. Stability of a straight Kirchhoff elastic rod under the force screws. Acta Physica Sinica, 2009, 58(10): 6737-6742. doi: 10.7498/aps.58.6737
    [13] Wang Zuo-Lei. Stability and Hopf bifurcation of the simplified Lang-Kobayashi equation. Acta Physica Sinica, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [14] Wang Xiao-Qiu, Wang Bao-Lin. Stabilizing the silicon fullerene Si24 by La and Gd encapsulation. Acta Physica Sinica, 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [15] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Gao Pin, Qiao Jian-Liang, Zeng Yi-Ping. Stability of GaAs photocathodes under different intensities of illumination. Acta Physica Sinica, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] Li Juan, Wu Chun-Ya, Zhao Shu-Yun, Liu Jian-Ping, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Fang. Investigation on stability of microcrystalline silicon thin film transistors. Acta Physica Sinica, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] Zhang Kai, Feng Jun. Symmetry and stability of a relativistic birkhoff system. Acta Physica Sinica, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] Ouyang Shi-Gen, Jiang De-Sheng, She Wei-Long. Stability of photovotaic spatial soliton with two-wavelength components. Acta Physica Sinica, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
Metrics
  • Abstract views:  6267
  • PDF Downloads:  309
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2015
  • Accepted Date:  21 August 2015
  • Published Online:  05 January 2016

/

返回文章
返回