-
Wind power is one of the most attractive renewable clean energies under development at present. On a global scale, wind power generation development was very rapid in recent years. As the wind power generation tends to develop toward large-scale and offshore, the traditional cooling methods gradually expose their own shortcomings. As the large wind turbine installation tower is high, and the installation site is dispersed, the installation and maintenance of wind turbine generator are difficult. So, the generator is required to have a small weight and less maintenance. Self-circulation inner evaporative cooling system (SCIECS) has the following advantages: self-circulation without pump, high cooling efficiency, safe and reliable operation, and basically maintain-free, etc. The self-circulation of cooling system can be realized by the 35 between wind turbine generator and the horizontal direction, and it is very suitable for being used in a large-scale wind power generator. Owing to the intrinsic nonlinearity of two-phase self-circulation system, changes of operation condition and circuit topology in a large range may lead to an instability of the cooling system, causing the system parameters to severly change. The instability of the cooling system can cause the local overheating and even burning of the generator, which provides a huge security risk for the cooling system, thus threatening the safe and stable operation of the generator. The stability of SCIECS is very important for the safe operation of wind turbine. In this paper, static stability of the SCIECS in wind power generator is studied based on the nonlinear bifurcation analysis theory and its numerical continuation method. System static bifurcation diagram is obtained to analyze the evolution characteristics of the SCIECS. Parameter effect of the system static bifurcation is analyzed at the same time. In order to verify the theoretical prediction of the static bifurcation of the small-angle two-phase natural circulation, an experimental platform is built. Static bifurcation of the SCIECS is observed experimentally. The experimental results show that the static bifurcation phenomenon exists in the natural circulation two-phase flow of small angle, and the theoretically predicted m-Q bifurcation curves are in good agreement with the experimental curves, which verifies the correctness of the theoretical analysis.
-
Keywords:
- wind power /
- evaporative cooling /
- self-circulation /
- stability
[1] Ruan L 2004 Ph. D. Dissertation (Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences) (in Chinese) [阮琳 2004 博士学位论文(北京: 中国科学院电工研究所)]
[2] Yan J 2013 Ph. D. Dissertation (Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences) (in Chinese) [闫静 2013 博士学位论文(北京: 中国科学院电工研究所)]
[3] Bouer J A, Bergles A E, Tong L S 1973 Nucl. Engineer. Design 25 165
[4] Ramos E, Sen M, Trevino C 1985 Int. J. Heat Mass 28 1711
[5] Wang J J, Yang X T, Jiang S Y 2007 Acta Atom. Energy Sci. Technol. 41 180 (in Chinese) [王建军, 杨星团, 姜胜耀 2007 原子能科学技术 41 180]
[6] Knaani A, Zvirin Y 1993 Int. J. Multiphase Flow 19 1129
[7] Yao W 2000 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [姚伟 2000 博士学位论文(上海: 上海交通大学)]
[8] Kuang B, Chen H, Hu Z H, Lu L L, Xu J J 2005 J. Engineer. Thermophys. 26 967 (in Chinese) [匡波, 陈宏, 胡志华, 路柳柳, 徐继鋆 2005 工程热物理学报 26 967]
[9] Liu H C, Wang Y, Su Z X 2013 Acta Phys.Sin. 62 240506 (in Chinese) [刘洪臣, 王云, 苏振霞 2013 物理学报 62 240506]
[10] Wu J K, Zhou L W, Lu W G 2012 Acta Phys.Sin. 61 210202 (in Chinese) [吴科军, 周雒维, 卢伟国 2012 物理学报 61 210202]
[11] Lu Z Q 2002 Two-phase Flow and Boiling Heat Transfer (Beijing: Tsinghua University Press) p23 (in Chinese) [鲁钟琪 2002两相流与沸腾传热(北京:清华大学出版社)第23页]
[12] Xu J A, Lu Z Q 2001 Boiling Heat Transfer and Gas-Liquid Two-Phase Flow (Beijing: Atomic Energy Press) p103 (in Chinese) [徐济鋆, 鲁钟琪 2002沸腾传热和气液两相流(北京:原子能出版社)第103页]
-
[1] Ruan L 2004 Ph. D. Dissertation (Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences) (in Chinese) [阮琳 2004 博士学位论文(北京: 中国科学院电工研究所)]
[2] Yan J 2013 Ph. D. Dissertation (Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences) (in Chinese) [闫静 2013 博士学位论文(北京: 中国科学院电工研究所)]
[3] Bouer J A, Bergles A E, Tong L S 1973 Nucl. Engineer. Design 25 165
[4] Ramos E, Sen M, Trevino C 1985 Int. J. Heat Mass 28 1711
[5] Wang J J, Yang X T, Jiang S Y 2007 Acta Atom. Energy Sci. Technol. 41 180 (in Chinese) [王建军, 杨星团, 姜胜耀 2007 原子能科学技术 41 180]
[6] Knaani A, Zvirin Y 1993 Int. J. Multiphase Flow 19 1129
[7] Yao W 2000 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [姚伟 2000 博士学位论文(上海: 上海交通大学)]
[8] Kuang B, Chen H, Hu Z H, Lu L L, Xu J J 2005 J. Engineer. Thermophys. 26 967 (in Chinese) [匡波, 陈宏, 胡志华, 路柳柳, 徐继鋆 2005 工程热物理学报 26 967]
[9] Liu H C, Wang Y, Su Z X 2013 Acta Phys.Sin. 62 240506 (in Chinese) [刘洪臣, 王云, 苏振霞 2013 物理学报 62 240506]
[10] Wu J K, Zhou L W, Lu W G 2012 Acta Phys.Sin. 61 210202 (in Chinese) [吴科军, 周雒维, 卢伟国 2012 物理学报 61 210202]
[11] Lu Z Q 2002 Two-phase Flow and Boiling Heat Transfer (Beijing: Tsinghua University Press) p23 (in Chinese) [鲁钟琪 2002两相流与沸腾传热(北京:清华大学出版社)第23页]
[12] Xu J A, Lu Z Q 2001 Boiling Heat Transfer and Gas-Liquid Two-Phase Flow (Beijing: Atomic Energy Press) p103 (in Chinese) [徐济鋆, 鲁钟琪 2002沸腾传热和气液两相流(北京:原子能出版社)第103页]
Catalog
Metrics
- Abstract views: 7173
- PDF Downloads: 258
- Cited By: 0