Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stochastic multi-resonance induced by partial time delay in a Watts-Strogatz small-world neuronal network

Sun Xiao-Juan Li Guo-Fang

Citation:

Stochastic multi-resonance induced by partial time delay in a Watts-Strogatz small-world neuronal network

Sun Xiao-Juan, Li Guo-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In a neuronal system, propagation speed of neuronal information is mainly determined by the length, the diameter, and the kind of the axons between the neurons. Thus, some communications between neurons are not instantaneous, and others are instantaneous or with some negligible delay. In the past years, effects of time delay on neuronal dynamics, such as synchronization, stochastic resonance, firing regularity, etc., have been investigated. For stochastic resonance, it has been reported recently that stochastic multi-resonance in a neuronal system can be induced by time delay. However, in these studies, time delay has been introduced to every connection of the neuronal system. As mentioned in the beginning, in a real neuronal system, communication between some neurons can be instantaneous or with some negligible delays. Thus, considering the effect of partial time delay (time delay is called as partial time delay if only part of connections are delayed) on neuronal dynamics could be more meaningful.In this paper, we focus on discussing effect of partial time delay on response amplitude of a Watts-Strogatz neuronal network which is locally modeled by Rulkov map. With the numerically obtained results, we can see that partial time delay can induce a stochastic multi-resonance which is indicated by the multi-peak characteristics in the variation of response amplitude with partial time delay. Namely, partial time delay could also induce stochastic multi-resonance in a neuronal system. Moreover, we also find that optimal response amplitude can be reached in much wider range of the partial time delay value when delayed connections are less (i.e., the partial time delay probability is small). This is different from the case in which all connections are delayed, where response amplitude become optimal only when time delay is nearly the multiples of external signal's period. But the range of the partial time delay value becomes narrower and narrower with the increasing of the partial time delay probability and when the partial time delay probability is large enough, response amplitude becomes optimal only when time delay is nearly the multiples of external signal period. It is similar to the case where all connections are delayed. Furthermore, effects of random rewiring probability and total link number in the neuronal network on partial time delay induced stochastic multi-resonance are also studied. It is found that partial time delay induced stochastic multi-resonance is robust to random rewiring probability but not robust to total link number. Stochastic resonance is a very important nonlinear phenomenon in neuroscience, thus, our obtained results could have some implications in this field.
      Corresponding author: Sun Xiao-Juan, sunxiaojuan@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11102094, 11472061, 11572084).
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [2]

    Pikovsky A S, Kurths J 1997 Phys. Rev. Lett. 78 775

    [3]

    Masoliver J, Robinson A, Weiss G H 1995 Phys. Rev. E 51 4021

    [4]

    Porra J M 1997 Phys. Rev. E 55 6533

    [5]

    Collins J J, Chow C C, Capela A C, Imhoff T T 1996 Phys. Rev. E 54 5575

    [6]

    Collins J J, Chow C C, Imhoff T T 1995 Phys. Rev. E 52 R3321

    [7]

    Heneghan C, Chow C C, Collins J J, Imhoff T T, Lowen S B, Teich M C 1996 Phys. Rev. E 54 R2228

    [8]

    Vilar J M G, Rub J M 1997 Phys. Rev. Lett. 78 2882

    [9]

    Longtin A, Bulsara A, Moss F 1991 Phys. Rev. Lett. 67 656

    [10]

    Douglass J K, Wilkens L, Pantazelou E, Moss F 1993 Nature 365 337

    [11]

    Sun Z K, Lu P J, Xu W 2014 Acta Phys. Sin. 63 220503 (in Chinese) [孙中奎, 鲁捧菊, 徐伟 2014 物理学报 63 220503]

    [12]

    Jin Y F 2015 Chin. Phys. B 24 110501

    [13]

    Xu Y, Wu J, Zhang H Q, Ma S J 2012 Nonlinear Dyn. 70 531

    [14]

    Gammaitoni L, Hnggi P, Jung P 1998 Rev. Mod. Phys. 70 223

    [15]

    Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L 2004 Phys. Rep. 392 321

    [16]

    Perc M 2007 Phys. Rev. E 76 066203

    [17]

    Sun X J, Perc M, Lu Q S, Kurths J 2008 Chaos 18 023102

    [18]

    Sun X J, Lu Q S 2014 Chin. Phys. Lett. 31 020502

    [19]

    Qin H X, Ma J, Wang C N, Wu Y 2014 PLoS One 9 e100849

    [20]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [21]

    Yu H T, Guo X M, Wang J, Deng B, Wei X L 2015 Physica A 419 307

    [22]

    Volkov E I, Ullner E, Kurths J 2005 Chaos 15 023105

    [23]

    Liu Z Q, Zhang H M, Li Y Y, Hua C C, Gu H G, Ren W 2010 Physica A 389 2642

    [24]

    Lin X, Gong Y B, Wang L 2011 Chaos 21 043109

    [25]

    Jia Y B, Gu H G 2015 Chaos 25 123124

    [26]

    Wang Q Y, Zhang H H, Perc M, Chen G R 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3979

    [27]

    Wang Q Y, Perc M, Duan Z S, Chen G R 2009 Chaos 19 023112

    [28]

    Hao Y H, Gong Y B, Lin X 2011 Neurocomputing 74 1748

    [29]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183

    [30]

    Ibarz B, Casado J M, Sanjuan M A F 2011 Phys. Rep. 501 1

    [31]

    Hilborn R C 2004 Am. J. Phys. 72 528

    [32]

    Rulkov N F, Timofeev I, Bazhenov M 2004 J. Comput. Neurosci. 17 203

    [33]

    Rulkov N F, Bazhenov M 2008 J. Biol. Phys. 34 279

    [34]

    Nowotny T, Huerta R, Abarbanel H D I, Rabinovich M I 2005 Biol. Cybern. 93 436

    [35]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [36]

    Landa P S, McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433

    [37]

    Zaikin U A, Garca-Ojalvo J, Bscones R, Kurths J 2003 Phys. Lett. A 312 348

    [38]

    Rajasekar S, Used J, Wagemakers A, Sanjuan M A F 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3435

    [39]

    Zhao Z G, Gu H G 2015 Chaos, Solitions Fractals 80 96

    [40]

    Gu H G 2015 PLoS One 10 e0138593

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [2]

    Pikovsky A S, Kurths J 1997 Phys. Rev. Lett. 78 775

    [3]

    Masoliver J, Robinson A, Weiss G H 1995 Phys. Rev. E 51 4021

    [4]

    Porra J M 1997 Phys. Rev. E 55 6533

    [5]

    Collins J J, Chow C C, Capela A C, Imhoff T T 1996 Phys. Rev. E 54 5575

    [6]

    Collins J J, Chow C C, Imhoff T T 1995 Phys. Rev. E 52 R3321

    [7]

    Heneghan C, Chow C C, Collins J J, Imhoff T T, Lowen S B, Teich M C 1996 Phys. Rev. E 54 R2228

    [8]

    Vilar J M G, Rub J M 1997 Phys. Rev. Lett. 78 2882

    [9]

    Longtin A, Bulsara A, Moss F 1991 Phys. Rev. Lett. 67 656

    [10]

    Douglass J K, Wilkens L, Pantazelou E, Moss F 1993 Nature 365 337

    [11]

    Sun Z K, Lu P J, Xu W 2014 Acta Phys. Sin. 63 220503 (in Chinese) [孙中奎, 鲁捧菊, 徐伟 2014 物理学报 63 220503]

    [12]

    Jin Y F 2015 Chin. Phys. B 24 110501

    [13]

    Xu Y, Wu J, Zhang H Q, Ma S J 2012 Nonlinear Dyn. 70 531

    [14]

    Gammaitoni L, Hnggi P, Jung P 1998 Rev. Mod. Phys. 70 223

    [15]

    Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L 2004 Phys. Rep. 392 321

    [16]

    Perc M 2007 Phys. Rev. E 76 066203

    [17]

    Sun X J, Perc M, Lu Q S, Kurths J 2008 Chaos 18 023102

    [18]

    Sun X J, Lu Q S 2014 Chin. Phys. Lett. 31 020502

    [19]

    Qin H X, Ma J, Wang C N, Wu Y 2014 PLoS One 9 e100849

    [20]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [21]

    Yu H T, Guo X M, Wang J, Deng B, Wei X L 2015 Physica A 419 307

    [22]

    Volkov E I, Ullner E, Kurths J 2005 Chaos 15 023105

    [23]

    Liu Z Q, Zhang H M, Li Y Y, Hua C C, Gu H G, Ren W 2010 Physica A 389 2642

    [24]

    Lin X, Gong Y B, Wang L 2011 Chaos 21 043109

    [25]

    Jia Y B, Gu H G 2015 Chaos 25 123124

    [26]

    Wang Q Y, Zhang H H, Perc M, Chen G R 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3979

    [27]

    Wang Q Y, Perc M, Duan Z S, Chen G R 2009 Chaos 19 023112

    [28]

    Hao Y H, Gong Y B, Lin X 2011 Neurocomputing 74 1748

    [29]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183

    [30]

    Ibarz B, Casado J M, Sanjuan M A F 2011 Phys. Rep. 501 1

    [31]

    Hilborn R C 2004 Am. J. Phys. 72 528

    [32]

    Rulkov N F, Timofeev I, Bazhenov M 2004 J. Comput. Neurosci. 17 203

    [33]

    Rulkov N F, Bazhenov M 2008 J. Biol. Phys. 34 279

    [34]

    Nowotny T, Huerta R, Abarbanel H D I, Rabinovich M I 2005 Biol. Cybern. 93 436

    [35]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [36]

    Landa P S, McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433

    [37]

    Zaikin U A, Garca-Ojalvo J, Bscones R, Kurths J 2003 Phys. Lett. A 312 348

    [38]

    Rajasekar S, Used J, Wagemakers A, Sanjuan M A F 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3435

    [39]

    Zhao Z G, Gu H G 2015 Chaos, Solitions Fractals 80 96

    [40]

    Gu H G 2015 PLoS One 10 e0138593

  • [1] Xu Zi-Heng, He Yu-Zhu, Kang Yan-Mei. Color image perception based on stochastic spiking neural network. Acta Physica Sinica, 2022, 71(7): 070501. doi: 10.7498/aps.71.20211982
    [2] Bai Jing, Guan Fu-Rong, Tang Guo-Ning. Various effects induced by local synchronization in neural networks. Acta Physica Sinica, 2021, 70(17): 170502. doi: 10.7498/aps.70.20210142
    [3] Huang Zhi-Jing, Li Qian-Yun, Bai Jing, Tang Guo-Ning. Entropy measurement of ordered patterns in neuronal network with repulsive coupling. Acta Physica Sinica, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [4] Wang Peng, Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning. Spontaneous formation of ordered waves in chaotic neuronal network with excitory-inhibitory connections. Acta Physica Sinica, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [5] Li Guo-Fang, Sun Xiao-Juan. Effects of hybrid synapses and partial time delay on stochastic resonance in a small-world neuronal network. Acta Physica Sinica, 2017, 66(24): 240501. doi: 10.7498/aps.66.240501
    [6] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Erratum: Modulation of nonlinear coupling on the synchronization induced by linear coupling [Acta Phys. Sin. 2013, 62(02): 028701]. Acta Physica Sinica, 2015, 64(19): 199901. doi: 10.7498/aps.64.199901
    [7] Li Na, Yang Xiao-Li. Synchronous dynamics of small-world neuronal network system with spatially correlated white noise. Acta Physica Sinica, 2015, 64(22): 220503. doi: 10.7498/aps.64.220503
    [8] Sun Run-Zhi, Wang Zhi-Zhong, Wang Mao-Sheng, Zhang Ji-Qian. Vibrational resonance and nonlinear vibrational resonance in square-lattice neural system. Acta Physica Sinica, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [9] Xu Ying, Wang Chun-Ni, Jin Wu-Yin, Ma Jun. Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling. Acta Physica Sinica, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [10] Sun Xiao-Juan, Yang Bai-Hua, Wu Ye, Xiao Jing-Hua. Effects of arrangement of heterogeneous neurons on frequency synchronization of a ring-coupled neuronal network. Acta Physica Sinica, 2014, 63(18): 180507. doi: 10.7498/aps.63.180507
    [11] Wu Xin-Yi, Ma Jun, Xie Zhen-Bo. Effect of inhomogeneous distribution of ion channels on collective electric activities of neurons in a ring network. Acta Physica Sinica, 2013, 62(24): 240507. doi: 10.7498/aps.62.240507
    [12] Wang Rong, Wu Ying, Liu Shao-Bao. Effect of ion channel random blocking on the spatiotemporal dynamics of neuronal network. Acta Physica Sinica, 2013, 62(22): 220504. doi: 10.7498/aps.62.220504
    [13] Hu Bo-Lin, Ma Jun, Li Fan, Pu Zhong-Sheng. Mechanism of target wave excited by current with diversity. Acta Physica Sinica, 2013, 62(5): 058701. doi: 10.7498/aps.62.058701
    [14] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Physica Sinica, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [15] Zhang Jing-Jing, Jin Yan-Fei. Stochastic resonance in FHN neural system driven by non-Gaussian noise. Acta Physica Sinica, 2012, 61(13): 130502. doi: 10.7498/aps.61.130502
    [16] Ma Jun, Xie Zhen-Bo, Chen Jiang-Xing. Numerical study of the death and breakup of spiral wave in the networks of thermosensitive neurons. Acta Physica Sinica, 2012, 61(3): 038701. doi: 10.7498/aps.61.038701
    [17] Wu Wang-Sheng, Tang Guo-Ning. Synchronizations of chaotic neuronal networks under different couplings. Acta Physica Sinica, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [18] Wang Mao-Sheng, Huang Wan-Xia, Cui Zhi-Feng. Coherence bi-resonance in a two-dimensional neural map. Acta Physica Sinica, 2010, 59(7): 4485-4489. doi: 10.7498/aps.59.4485
    [19] Liu Zhi-Hong, Zhou Yu-Rong, Zhang An-Ying, Pang Xiao-Feng. Coherence resonance in a nonlinear neuronal models driven by correlated colored noise. Acta Physica Sinica, 2010, 59(2): 699-704. doi: 10.7498/aps.59.699
    [20] Wang Mao-Sheng. Frequency-dependent stochastic resonance in a two-dimensional neural map. Acta Physica Sinica, 2009, 58(10): 6833-6837. doi: 10.7498/aps.58.6833
Metrics
  • Abstract views:  6584
  • PDF Downloads:  312
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2016
  • Accepted Date:  08 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回