Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wind power time series prediction using optimized kernel extreme learning machine method

Li Jun Li Da-Chao

Citation:

Wind power time series prediction using optimized kernel extreme learning machine method

Li Jun, Li Da-Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since wind has an intrinsically complex and stochastic nature, accurate wind power prediction is necessary for the safety and economics of wind energy utilization. Aiming at the prediction of very short-term wind power time series, a new optimized kernel extreme learning machine (O-KELM) method with evolutionary computation strategy is proposed on the basis of single-hidden layer feedforward neural networks. In comparison to the extreme learning machine (ELM) method, the number of the hidden layer nodes need not be given, and the unknown nonlinear feature mapping of the hidden layer is represented with a kernel function. In addition, the output weights of the networks can also be analytically determined by using regularization least square algorithm, hence the kernel extreme learning machine (KELM) method provides better generalization performance at a much faster learning speed. In the O-KELM, the structure and the parameters of the KELM are optimized by using three different optimization algorithms, i.e., genetic algorithm (GA), differential evolution (DE), and simulated annerling (SA), meanwhile, the output weights are obtained by a least squares algorithm just the same as by the ELM, but using Tikhonovs regularization in order to further improve the performance of the O-KELM. The utilized optimization algorithms of the O-KELM are respectively used to select the set of input variables, regularization coefficient as well as hyperparameter of kernel function. The proposed method is first applied to the direct six-step prediction for Mackey-Glass chaotic time series, under the same condition as the existing optimized ELM method. From the analysis of the simulation results it can be verified that the prediction accuracy of the proposed O-KELM method is increased by about one order of magnitude over that of the optimized ELM method. Furthermore, the DE-KELM algorithm can achieve the lowest root mean square error (RMSE). The O-KELM method is then applied to real-world wind power prediction instance, i.e., the Western Dataset from NERL. The 10-minute ahead single-step prediction as well as 20-minute ahead, 30-minute ahead, 40-minute ahead multi-step prediction for wind power time series are respectively implemented to evaluate the O-KELM method. Experimental results of each of the short-term wind power time series predictions at different time horizons confirm that the proposed O-KELM method tends to have better prediction accuracy than the optimized ELM method. Moreover, the GA-KELM algorithm outperforms other two O-KELM algorithms at future 10-minute, 20-minute, 40-minute ahead prediction in terms of the RMSE value. The DE-KELM algorithm outperforms other algorithms at future 30-minute ahead prediction in terms of the normalized mean square error (NMSE) and the RMSE value. The results from these applications demonstrate the effectiveness and feasibility of the proposed O-KLEM method. Therefore, the O-KELM method has a potential future in the field of wind power prediction.
      Corresponding author: Li Jun, lijun691201@mail.lzjtu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51467008).
    [1]

    Wang X C, Guo P, Huang X B 2011 Energy Procedia 12 770

    [2]

    Zhang G Y, Wu Y G, Zhang Y, Dai X L 2014 Acta Phys. Sin. 63 138801 (in Chinese) [章国勇, 伍永刚, 张洋, 代贤良 2014 物理学报 63 138801]

    [3]

    Foley A M, Leahy P G, Marvuglia A, McKeogh E J 2012 Renew. Energy 37 1

    [4]

    Colak I, Sagiroglu S, Yesilbudak M 2012 Renew. Energy 46 241

    [5]

    Jung J, Broadwater R P 2014 Renew. Sustain. Energy Rev. 31 762

    [6]

    Yang Z L, Feng Y, Xiong D F, Yang Z, Zhang X, Zhang J 2015 Smart Grid 3 1 (in Chinese) [杨正瓴, 冯勇, 熊定方, 杨钊, 张玺, 张军 2015 智能电网 3 1]

    [7]

    Potter C W, Negnevitsky M 2006 IEEE Trans. Power Syst. 21 965

    [8]

    Kavasseri R G, Seetharaman K 2009 Renew. Energy 34 1388

    [9]

    Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Kallos G, Pytharoulis I 2008 J. Wind Eng. Ind. Aerodyn. 96 2348

    [10]

    Liu R Y, Huang L 2012 Autom. Electr. Power Syst. 36 18 (in Chinese) [刘瑞叶, 黄磊 2012 电力系统自动化 36 18]

    [11]

    Seo I Y, Ha B N, Lee S W, Jang M J, Kim S O, Kim S J 2012 J. Energy Power Eng. 6 1605

    [12]

    Zeng J W, Wei Q 2012 IEEE Trans. Sustain. Energy 3 255

    [13]

    Huang G B, Zhu Q Y, Siew C K 2006 Neurocomputing 70 489

    [14]

    Chen H Y, Gao P Z, Tan S C, Fu X K 2014 Acta Phys. Sin. 63 200505 (in Chinese) [陈涵瀛, 高璞珍, 谭思超, 付学宽 2014 物理学报 63 200505]

    [15]

    Matias T, Souza F, Arajo R, Antunes C H 2014 Neurocomputing 129 428

    [16]

    Wan C, Xu Z, Pinson P, Dong Z Y, Wong K P 2014 IEEE Trans. Power Syst. 29 1033

    [17]

    Huang G B, Zhou H M, Ding X J, Zhang R 2012 IEEE Trans. Syst. Man, and Cybern. B: Cybern. 42 513

    [18]

    Wang X Y, Han M 2015 Acta Phys. Sin. 64 070504 (in Chinese) [王新迎, 韩敏 2015 物理学报 64 070504]

    [19]

    Zhang Y T, Ma C, Li Z N, Fan H B 2014 J. Shanghai Jiaotong Univ. (Sci.) 48 641 (in Chinese) [张英堂, 马超, 李志宁, 范洪波 2014 上海交通大学学报 48 641]

    [20]

    Haupt R L, Haupt S E 2004 Practical Genetic Algorithms (2nd Ed. with CD-ROM) (New York: John Wiley Sons) pp27-66

    [21]

    Mohamed M H 2011 Neurocomputing 74 3180

    [22]

    Feoktistov V 2006 Differential Evolution:In Search of Solutions (Secaucus, NJ, USA:Springer-Verlag New York, Inc.) pp1-82

    [23]

    Machey M C, Glass L 1977 Science 197 287

    [24]

    Potter C W, Lew D, McCaa J, Cheng S, Eichelberger S, Grimit E 2008 Wind Eng. 32 325

  • [1]

    Wang X C, Guo P, Huang X B 2011 Energy Procedia 12 770

    [2]

    Zhang G Y, Wu Y G, Zhang Y, Dai X L 2014 Acta Phys. Sin. 63 138801 (in Chinese) [章国勇, 伍永刚, 张洋, 代贤良 2014 物理学报 63 138801]

    [3]

    Foley A M, Leahy P G, Marvuglia A, McKeogh E J 2012 Renew. Energy 37 1

    [4]

    Colak I, Sagiroglu S, Yesilbudak M 2012 Renew. Energy 46 241

    [5]

    Jung J, Broadwater R P 2014 Renew. Sustain. Energy Rev. 31 762

    [6]

    Yang Z L, Feng Y, Xiong D F, Yang Z, Zhang X, Zhang J 2015 Smart Grid 3 1 (in Chinese) [杨正瓴, 冯勇, 熊定方, 杨钊, 张玺, 张军 2015 智能电网 3 1]

    [7]

    Potter C W, Negnevitsky M 2006 IEEE Trans. Power Syst. 21 965

    [8]

    Kavasseri R G, Seetharaman K 2009 Renew. Energy 34 1388

    [9]

    Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Kallos G, Pytharoulis I 2008 J. Wind Eng. Ind. Aerodyn. 96 2348

    [10]

    Liu R Y, Huang L 2012 Autom. Electr. Power Syst. 36 18 (in Chinese) [刘瑞叶, 黄磊 2012 电力系统自动化 36 18]

    [11]

    Seo I Y, Ha B N, Lee S W, Jang M J, Kim S O, Kim S J 2012 J. Energy Power Eng. 6 1605

    [12]

    Zeng J W, Wei Q 2012 IEEE Trans. Sustain. Energy 3 255

    [13]

    Huang G B, Zhu Q Y, Siew C K 2006 Neurocomputing 70 489

    [14]

    Chen H Y, Gao P Z, Tan S C, Fu X K 2014 Acta Phys. Sin. 63 200505 (in Chinese) [陈涵瀛, 高璞珍, 谭思超, 付学宽 2014 物理学报 63 200505]

    [15]

    Matias T, Souza F, Arajo R, Antunes C H 2014 Neurocomputing 129 428

    [16]

    Wan C, Xu Z, Pinson P, Dong Z Y, Wong K P 2014 IEEE Trans. Power Syst. 29 1033

    [17]

    Huang G B, Zhou H M, Ding X J, Zhang R 2012 IEEE Trans. Syst. Man, and Cybern. B: Cybern. 42 513

    [18]

    Wang X Y, Han M 2015 Acta Phys. Sin. 64 070504 (in Chinese) [王新迎, 韩敏 2015 物理学报 64 070504]

    [19]

    Zhang Y T, Ma C, Li Z N, Fan H B 2014 J. Shanghai Jiaotong Univ. (Sci.) 48 641 (in Chinese) [张英堂, 马超, 李志宁, 范洪波 2014 上海交通大学学报 48 641]

    [20]

    Haupt R L, Haupt S E 2004 Practical Genetic Algorithms (2nd Ed. with CD-ROM) (New York: John Wiley Sons) pp27-66

    [21]

    Mohamed M H 2011 Neurocomputing 74 3180

    [22]

    Feoktistov V 2006 Differential Evolution:In Search of Solutions (Secaucus, NJ, USA:Springer-Verlag New York, Inc.) pp1-82

    [23]

    Machey M C, Glass L 1977 Science 197 287

    [24]

    Potter C W, Lew D, McCaa J, Cheng S, Eichelberger S, Grimit E 2008 Wind Eng. 32 325

  • [1] Mei Ying, Tan Guan-Zheng, Liu Zhen-Tao, Wu He. Chaotic time series prediction based on brain emotional learning model and self-adaptive genetic algorithm. Acta Physica Sinica, 2018, 67(8): 080502. doi: 10.7498/aps.67.20172104
    [2] Shen Li-Hua, Chen Ji-Hong, Zeng Zhi-Gang, Jin Jian. Chaotic time series prediction based on robust extreme learning machine. Acta Physica Sinica, 2018, 67(3): 030501. doi: 10.7498/aps.67.20171887
    [3] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [4] Li Rui-Guo, Zhang Hong-Li, Fan Wen-Hui, Wang Ya. Hermite orthogonal basis neural network based on improved teaching-learning-based optimization algorithm for chaotic time series prediction. Acta Physica Sinica, 2015, 64(20): 200506. doi: 10.7498/aps.64.200506
    [5] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica, 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [6] Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen. Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica, 2015, 64(3): 030506. doi: 10.7498/aps.64.030506
    [7] Liu Qing-Chao, Lu Jian, Chen Shu-Yan. Traffic state prediction based on competence region. Acta Physica Sinica, 2014, 63(14): 140504. doi: 10.7498/aps.63.140504
    [8] Zhang Wen-Zhuan, Long Wen, Jiao Jian-Jun. Parameter determination based on composite evolutionary algorithm for reconstructing phase-space in chaos time series. Acta Physica Sinica, 2012, 61(22): 220506. doi: 10.7498/aps.61.220506
    [9] Li Jun, Zhang You-Peng. Single-step and multiple-step prediction of chaotic time series using Gaussian process model. Acta Physica Sinica, 2011, 60(7): 070513. doi: 10.7498/aps.60.070513
    [10] Li He, Yang Zhou, Zhang Yi-Min, Wen Bang-Chun. Methodology of estimating the embedding dimension in chaos time series based on the prediction performance of radial basis function neural networks. Acta Physica Sinica, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [11] Xiu Chun-Bo, Xu Meng. Multi-step prediction method for time series based on chaotic operator network. Acta Physica Sinica, 2010, 59(11): 7650-7656. doi: 10.7498/aps.59.7650
    [12] Zhang Chun-Tao, Ma Qian-Li, Peng Hong. Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction. Acta Physica Sinica, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [13] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [14] Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe. Prediction of chaotic time series based on EMD method. Acta Physica Sinica, 2008, 57(10): 6139-6144. doi: 10.7498/aps.57.6139
    [15] Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationary time series prediction based on the SVM method. Acta Physica Sinica, 2008, 57(2): 714-719. doi: 10.7498/aps.57.714
    [16] Yan Hua, Wei Ping, Xiao Xian-Ci. An adaptive approach based on Bernstein polynomial to predict chaotic time series. Acta Physica Sinica, 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [17] He Tao, Zhou Zheng-Ou. Prediction of chaotic time series based on fractal self-affinity. Acta Physica Sinica, 2007, 56(2): 693-700. doi: 10.7498/aps.56.693
    [18] Wu Yan-Dong, Xie Hong-Bo. A new method to recognize determinism in time series. Acta Physica Sinica, 2007, 56(11): 6294-6300. doi: 10.7498/aps.56.6294
    [19] Li Jun, Liu Jun-Hua. On the prediction of chaotic time series using a new generalized radial basis function neural networks. Acta Physica Sinica, 2005, 54(10): 4569-4577. doi: 10.7498/aps.54.4569
    [20] Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
Metrics
  • Abstract views:  10683
  • PDF Downloads:  519
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2016
  • Accepted Date:  15 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回