-
As cantilever-based vibration energy harvesters are easily fractured under large amplitude vibration excitation, in this paper we present a vibration energy harvester based on a pendulum-type structure with broadband and frequency-doubling characteristics. The harvester consists of two Terfenol-D/PMN-PT/Terfenol-D magnetoelectric transducers and a rotary pendulum embedded with six magnets. These six magnets are arranged into an optimum configuration and can produce a concentrated flux gradient which makes the magnetoelectric transducers generate a high power. While the two transducers are used to further improve the output power and power density of the harvester without increasing the volume of the harvester. The rotary pendulum of the harvester changes linear vibration into a back-and-forth swing of the rotary pendulum. When the rotary pendulum swings, the stress is hardly generated in the interior of the rotary pendulum. Therefore the rotary pendulum is not easily fractured under the large amplitude vibration. Therefore the proposed pendulum-based vibration energy harvester is suitable for scavenging the large amplitude ambient vibration energy. The swing equation of the rotary pendulum is established. The nonlinear dynamic equation of the rotary pendulum is solved by the Lindstedt-Poincar method. The frequency response characteristic and the mechano-magneto-electric transduction characteristic of the harvester at resonance are analyzed by combining the swing equation of the harvester with the magnetoelectric characteristics of the magnetoelectric transducers. The spectrum of the output voltage waveform of the harvester is discussed. The analytical and experimental results indicate that the harvester has broadband and frequency-doubling characteristics. The broadband characteristic of the harvester is derived from the nonlinear magnetic force between the magnets and magnetoelectric transducers. The voltage frequency-doubling characteristic is derived from the nonlinearity of the magnetic field produced by the magnets. It does not need frequency conversion mechanism for the proposed harvester, so the proposed harvester has some advantages, such as simple structure and easy manufacture. Under 1 g (1 g = 9.8 m/s2) RMS vibration acceleration excitation, the measured maximum RSM voltage and the resonant frequency of the prototype are 90.9 V and 16.9 Hz, respectively. The 3 dB bandwidth for the sweep-down condition is 4.8 Hz from 16.9 Hz to 21.7 Hz and that for the sweep-up condition is 2.1 Hz from 22.8 Hz to 24.9 Hz. Compared with other harvesters, the proposed harvester has a wide relative bandwidth. The load output power of the prototype reaches 3.569 mW across a 1.9 M optimal resistor at resonant frequency of 16.9 Hz with 1 g RMS vibration acceleration. The output RMS powers of the prototype across 1.9 M resistor are 0.156 mW, 0.6863 mW, 1.777 mW at 0.3 g, 0.5 g and 0.7 g with resonance, respectively. The proposed harvester can effectively improve the output powers at lower frequency vibrations for its two transducers, broadband and frequency-doubling characteristics.
-
Keywords:
- vibration energy harvesting /
- broadband /
- nonlinear /
- pendulum-type structures
[1] Su W J, Zu J, Zhu Y 2014 J. Intel. Mat. Syst. Str. 25 430
[2] Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501
[3] Huang P C, Tsai T H, Yang Y J 2013 Microelectron. Eng. 111 214
[4] Dai X, Wen Y, Li P, Yang J, Li M 2011 Sensor Actuator. A: Phys. 166 94
[5] Zhan Y Z, Wang G Q 2014 J.Vib. Eng. 27 871 (in Chinese) [展永政, 王光庆 2014 振动工程学报 27 871]
[6] Wang G, Zhang W, Liu C, Yang B Q, Liao W X 2015 Chin. J. Sensor Actuat. 28 1494 (in Chinese) [王光庆, 张伟, 刘创, 杨斌强, 廖维新 2015 传感技术学报 28 1494]
[7] Tan W, Wang X P, Cao J J 2014 Acta Phys. Sin. 63 240504 (in Chinese) [唐炜, 王小璞, 曹景军 2014 物理学报 63 240504]
[8] Yang J, Wen Y, Li P, Dai X 2011 Sensor Actuator. A: Phys. 168 358
[9] Bai X, Wen Y, Li P, Yang J, Peng X, Yue X 2014 Sensor Actuator. A: Phys. 209 78
[10] Xu C, Liang Z, Ren B, Di W, Luo H, Wang D, Wang K, Chen Z 2013 J. Appl. Phys. 114 114507
[11] Wang G Q, Zhan Y Z, Jin W P, Liao W X 2015 J. Mech. Eng. 51 155 (in Chinese) [王光庆, 展永政, 金文平, 廖维新 2015 机械工程学报 51 155]
[12] Spreemann D, Manoli Y, Folkmer B, Mintenbeck D 2006 J. Micromech. Microeng. 16 S169
[13] Ylli K, Hoffmann D, Willmann A, Folkmer B, Manoli Y 2015 J. Phys.: Conf. Ser. 660 012053
[14] Wang Y J, Chen C D, Sung C K 2010 Sensor Actuator. A: Phys. 159 196
[15] Malaji P V, Ali S F 2015 Eur. Phys. J. Spec. Top. 224 2823
[16] Ma T W, Zhang H, Xu N S 2012 Mech. Syst. Signal Process. 28 323
[17] Dai X 2016 Sensor Actuator. A: Phys. 241 161
[18] Huang J K, OHandley R C, Bono D 2003 Proceedings of SPIE: Smart Structures and Materials California, USA, March 3-5, 2003 p229
[19] Klah H, Najafi K 2008 IEEE Sens. J. 8 261
[20] Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2011 Procedia Eng. 25 725
[21] Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2012 Sensor Actuator. A: Phys. 186 242
[22] zge Z, Klah H 2013 Sensor Actuator. A: Phys. 202 124
[23] Tang Q, Yang Y, Li X 2014 Rev. Sci. Instrum. 84 1
[24] Dong S, Li J, Viehland D 2003 IEEE T. Ultrason. Fekroelectr. Freq. Control 50 1253
[25] Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137 (in Chinese) [代显智, 文玉梅, 李平, 杨进, 江小芳 2010 物理学报 59 2137]
[26] Liu Y Z, Chen W L, Chen L Q 1998 Vibration Mechanics (Beijing: Higher Education Press) p45 (in Chinese) [刘延柱, 陈文良, 陈立群 1998 振动力学 (北京: 高等教育出版社) 第45页]
[27] Dai X, Wen Y, Li P, Yang J, Zhang G 2009 Sensor Actuator. A: Phys. 156 350
[28] Dai X, Zhang Z, Wang Y, Li J, Chen L 2014 J. Appl. Phys. 115 014104
[29] Dai X Z 2014 Acta Phys. Sin. 63 207501 (in Chinese) [代显智 2014 物理学报 63 207501]
[30] Xing X, Lou J, Yang G M, Obi O, Driscoll C, Sun N X 2009 Appl. Phys. Lett. 95 134103
[31] Stanton S C, McGehee C C, Mann B P 2009 Appl. Phys. Lett. 95 174103
[32] Ma H A, Liu J Q, Tang G, Yang C S, Li Y G 2011 Transd. Microsyst. Techn. 30 66 (in Chinese) [马华安, 刘景全, 唐刚, 杨春生, 李以贵 2011 传感器与微系统 30 66]
[33] Bartsch U, Gaspar J, Year P O 2009 IEEE 22nd International Conference on MEMS,Sorrento, Italy, Jan. 25-29, 2009 p1043
[34] Yang J, Yue X, Wen Y, Li P, Yu Q, Bai X 2014 Sensor Actuator. A: Phys. 205 47
[35] Yue X H, Yang J, Wen Y M, Li P, Bai X L 2013 Chin. J. Sci. Instrum. 34 1961 (in Chinese) [岳喜海, 杨进, 文玉梅, 李平, 白小玲 2013 仪器仪表学报 34 1961]
[36] Zhang Y M, Yang C, Ma L, Wang K F 2012 Comput. Eng. 38 71 (in Chinese) [张永梅, 杨冲, 马礼, 王凯峰 2012 计算机工程 38 71]
[37] Zhang D Z, Yang T, Wei D M 2006 Transd. Microsyst. Techn. 25 10 (in Chinese) [张大踪, 杨涛, 魏东梅 2006 传感器与微系统 25 10]
-
[1] Su W J, Zu J, Zhu Y 2014 J. Intel. Mat. Syst. Str. 25 430
[2] Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501
[3] Huang P C, Tsai T H, Yang Y J 2013 Microelectron. Eng. 111 214
[4] Dai X, Wen Y, Li P, Yang J, Li M 2011 Sensor Actuator. A: Phys. 166 94
[5] Zhan Y Z, Wang G Q 2014 J.Vib. Eng. 27 871 (in Chinese) [展永政, 王光庆 2014 振动工程学报 27 871]
[6] Wang G, Zhang W, Liu C, Yang B Q, Liao W X 2015 Chin. J. Sensor Actuat. 28 1494 (in Chinese) [王光庆, 张伟, 刘创, 杨斌强, 廖维新 2015 传感技术学报 28 1494]
[7] Tan W, Wang X P, Cao J J 2014 Acta Phys. Sin. 63 240504 (in Chinese) [唐炜, 王小璞, 曹景军 2014 物理学报 63 240504]
[8] Yang J, Wen Y, Li P, Dai X 2011 Sensor Actuator. A: Phys. 168 358
[9] Bai X, Wen Y, Li P, Yang J, Peng X, Yue X 2014 Sensor Actuator. A: Phys. 209 78
[10] Xu C, Liang Z, Ren B, Di W, Luo H, Wang D, Wang K, Chen Z 2013 J. Appl. Phys. 114 114507
[11] Wang G Q, Zhan Y Z, Jin W P, Liao W X 2015 J. Mech. Eng. 51 155 (in Chinese) [王光庆, 展永政, 金文平, 廖维新 2015 机械工程学报 51 155]
[12] Spreemann D, Manoli Y, Folkmer B, Mintenbeck D 2006 J. Micromech. Microeng. 16 S169
[13] Ylli K, Hoffmann D, Willmann A, Folkmer B, Manoli Y 2015 J. Phys.: Conf. Ser. 660 012053
[14] Wang Y J, Chen C D, Sung C K 2010 Sensor Actuator. A: Phys. 159 196
[15] Malaji P V, Ali S F 2015 Eur. Phys. J. Spec. Top. 224 2823
[16] Ma T W, Zhang H, Xu N S 2012 Mech. Syst. Signal Process. 28 323
[17] Dai X 2016 Sensor Actuator. A: Phys. 241 161
[18] Huang J K, OHandley R C, Bono D 2003 Proceedings of SPIE: Smart Structures and Materials California, USA, March 3-5, 2003 p229
[19] Klah H, Najafi K 2008 IEEE Sens. J. 8 261
[20] Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2011 Procedia Eng. 25 725
[21] Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2012 Sensor Actuator. A: Phys. 186 242
[22] zge Z, Klah H 2013 Sensor Actuator. A: Phys. 202 124
[23] Tang Q, Yang Y, Li X 2014 Rev. Sci. Instrum. 84 1
[24] Dong S, Li J, Viehland D 2003 IEEE T. Ultrason. Fekroelectr. Freq. Control 50 1253
[25] Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137 (in Chinese) [代显智, 文玉梅, 李平, 杨进, 江小芳 2010 物理学报 59 2137]
[26] Liu Y Z, Chen W L, Chen L Q 1998 Vibration Mechanics (Beijing: Higher Education Press) p45 (in Chinese) [刘延柱, 陈文良, 陈立群 1998 振动力学 (北京: 高等教育出版社) 第45页]
[27] Dai X, Wen Y, Li P, Yang J, Zhang G 2009 Sensor Actuator. A: Phys. 156 350
[28] Dai X, Zhang Z, Wang Y, Li J, Chen L 2014 J. Appl. Phys. 115 014104
[29] Dai X Z 2014 Acta Phys. Sin. 63 207501 (in Chinese) [代显智 2014 物理学报 63 207501]
[30] Xing X, Lou J, Yang G M, Obi O, Driscoll C, Sun N X 2009 Appl. Phys. Lett. 95 134103
[31] Stanton S C, McGehee C C, Mann B P 2009 Appl. Phys. Lett. 95 174103
[32] Ma H A, Liu J Q, Tang G, Yang C S, Li Y G 2011 Transd. Microsyst. Techn. 30 66 (in Chinese) [马华安, 刘景全, 唐刚, 杨春生, 李以贵 2011 传感器与微系统 30 66]
[33] Bartsch U, Gaspar J, Year P O 2009 IEEE 22nd International Conference on MEMS,Sorrento, Italy, Jan. 25-29, 2009 p1043
[34] Yang J, Yue X, Wen Y, Li P, Yu Q, Bai X 2014 Sensor Actuator. A: Phys. 205 47
[35] Yue X H, Yang J, Wen Y M, Li P, Bai X L 2013 Chin. J. Sci. Instrum. 34 1961 (in Chinese) [岳喜海, 杨进, 文玉梅, 李平, 白小玲 2013 仪器仪表学报 34 1961]
[36] Zhang Y M, Yang C, Ma L, Wang K F 2012 Comput. Eng. 38 71 (in Chinese) [张永梅, 杨冲, 马礼, 王凯峰 2012 计算机工程 38 71]
[37] Zhang D Z, Yang T, Wei D M 2006 Transd. Microsyst. Techn. 25 10 (in Chinese) [张大踪, 杨涛, 魏东梅 2006 传感器与微系统 25 10]
Catalog
Metrics
- Abstract views: 6212
- PDF Downloads: 321
- Cited By: 0