Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Visual tracking based on the estimation of representation residual matrix

Chen Dian-Bing Zhu Ming Gao Wen Wang Hui-Li Yang Hang

Citation:

Visual tracking based on the estimation of representation residual matrix

Chen Dian-Bing, Zhu Ming, Gao Wen, Wang Hui-Li, Yang Hang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years,sparse representation theory has acquired considerable progress and has extensively been used in visual tracking.Most trackers used the sparse coefficients to merely calculate the position of the target according to the reconstruction error relative to sparse coefficients,and often neglected the information contained by representation residual matrix in representing step.Consequently,we present a novel sparse representation based tracker which takes representation residual matrix into consideration.First of all,at initialization of a new frame,we reconstruct the frame by singular value decomposition (SVD) to eliminate noise and useless information,which contributes a friendly frame for the following representation step.To obtain the compact representation of the target,we build L2-norm regularization according to the distance between the candidates wrapped in particle framework and the reconstruction calculated by dictionary templates and residual matrix.Additionally,we use the L1-norm constraint to restrict the sparse coefficients and the residual matrix of each candidate.Secondly,as the built optimization problem does not have closed-form solution,we design a method to compute the coefficients and the residual matrix iteratively.During each iteration,the coefficients are obtained by solving classical least absolute shrinkage and selectionator operator (LASSO) model,and the residual matrix is achieved by shrinkage operation.After solving the optimization problem,we compute the score of each candidate for evaluating the truth target with considering coefficients and residual matrix.The score is formulated as weighted reconstruction error which consists of dictionary templates,candidates,coefficients and residual matrix. The weight is the exponential value of absolute value of elements in residual matrix.Finally,for capturing the varying appearance of target in series,we update the dictionary template with assembled template,which is composed of residual matrix,selected candidate and dictionary template.In this paper,the template to be replaced is determined according to the score which is inversely proportional to the distance between the selected candidate and each dictionary template. Then we update the dictionary frame by frame during tracking process.Contributions of this work are threefold:1) the representation model captures holistic and local features of target and makes the tracker robust to varying illumination, shape transformation,and background clutter,profiting from preprocessing of SVD reconstruction,the model exhibits a more compact representation of target without disturbance of noisy variance;2) we employ a weight matrix to adjust reconstruction error in candidate evaluation step,as described above,the weight matrix strengthens the effect of error in residual matrix for evaluating candidates from which target is selected,it is noted that weights are all greater than one,which leads to reconstruction error expanding according to the error value of residual matrix,and keeps pixels where there is small error value believable for evaluation;and 3) we adopt an assembled template to update dictionary template and reconstruction of coefficients of selected candidate,which alleviates dictionary degradation and tracking drift problems and provides an accurate description of new appearance of target.In order to illustrate the performance of the proposed tracker,we enforce the algorithm on several challenging sequences and compare the proposed algorithm with five state-of-art methods,whose codes are all supplied by the authors.For complete illustration,both qualitative evaluation and quantitative evaluation are presented in experiment section.Through the experimental results,we could conclude that the proposed algorithm has a more favorable and robust performance than other state-of-art algorithms when dealing with kinds of situations during tracking.
      Corresponding author: Zhu Ming, zhu_mingca@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61401425), and the Science and Technology Development Plan for Youth Foundation of Jilin Province, China (Grant No. 20150520057JH).
    [1]

    Gao W, Tang Y, Zhu M 2015 Acta Phys. Sin. 64 014205 (in Chinese) [高文, 汤洋, 朱明2015物理学报64 014205]

    [2]

    Xu Y, Zhang B, Zhong Z F 2015 Pattern Recogn. Lett. 68 9

    [3]

    Fan Q, Qi C 2016 Neurocomputing 175 81

    [4]

    Kim M, Han D K, Ko H 2016 Information Fusion 27 198

    [5]

    Mei X, Ling H B 2009 Proceedings of IEEE International Conference on Computer Vision Kyoto, Japan, September 27-October 4, 2009 p1436

    [6]

    Liu B Y, Huang J Z, Yang L, Kulikowsk C 2011 Proceedings of IEEE Computer Vision, Pattern Recognition Colorado, Springs, June 21-252011 p1313

    [7]

    Jia X, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1822

    [8]

    Liu H P, Sun F C 2010 Proceedings of International Conference on Pattern Recognition Istanbul, Turkey, August 23-26, 2010 p1702

    [9]

    Wang B X, Zhao B J, Tang L B, Wang S G, Wu J H 2014 Acta Phys. Sin. 63 234201 (in Chinese) [王保宪, 赵保军, 唐林波, 王水根, 吴京辉2014物理学报63 234201]

    [10]

    Liu B Y, Yang L, Huang J Z, Meer P, Gong L G, Kulikowski C 2010 Proceedings of the 11th European Conference on Computer Vision Crete, Greece, September 5-11, 2010 p624

    [11]

    Wang Q, Chen F, Xu W L, Yang M H 2012 Proceedings of I EE E Workshop on Applications of Computer Vision Breckenridge, C O, January 9-11, 2012 p425

    [12]

    Bao C L, Wu Y, Ling H B, Ji H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1830

    [13]

    Pérez P, Hue C, Vermaak J, Gangnet M 2002 European Conference on Computer Vision Copenhagen, Denmark, May 28-31, 2002 p661

    [14]

    Zhang T Z, Ghanem B, Liu S, Ahuja N 2013 Int. J. Comput. Vision 101 367

    [15]

    Zhuang B H, Lu H C, Xiao Z Y, Wang D 2014 IEEE Trans. Image Proces. 23 1872

    [16]

    Zhong W, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1838

    [17]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [18]

    Donoho D L, T SA IG Y 2006 Signal Proces. 86 533

    [19]

    Rao S R, Tron R, Vidal R, Ma Y 2009 IEEE Trans. PAMI. 32 1832

    [20]

    Wang D, Lu H C 2012 IEEE Signal Proces. Lett. 19 711

    [21]

    Yan H, Yang J 2016 Neurocomputing 173 1936

    [22]

    Efron B, Hastie T, Johnstone I, Tibshirani R 2004 Ann. Statist. 32 407

    [23]

    Hale E T, Yin W, Zhang Y 2008 SIAM J. Opt. 19 1107

    [24]

    Wu Y, Lim J, Yang M H 2013 Proceedings of IEEE Computer Vision, Pattern Recognition Portland, Oregon, June 23-28, 2013 p2411

    [25]

    Ross D, Lim J, Lin R, Yang M H 2008 Int. J. Comput. Vision 77 125

    [26]

    Kalal Z, Mikolajczyk K, Matas J 2012 IEEE Trans. on PAMI 34 1409

    [27]

    Everingham M, Gool L V, Williams C K I, Winn J M, Zisserman A 2010 Int. J. Comput. Vision 88 303

  • [1]

    Gao W, Tang Y, Zhu M 2015 Acta Phys. Sin. 64 014205 (in Chinese) [高文, 汤洋, 朱明2015物理学报64 014205]

    [2]

    Xu Y, Zhang B, Zhong Z F 2015 Pattern Recogn. Lett. 68 9

    [3]

    Fan Q, Qi C 2016 Neurocomputing 175 81

    [4]

    Kim M, Han D K, Ko H 2016 Information Fusion 27 198

    [5]

    Mei X, Ling H B 2009 Proceedings of IEEE International Conference on Computer Vision Kyoto, Japan, September 27-October 4, 2009 p1436

    [6]

    Liu B Y, Huang J Z, Yang L, Kulikowsk C 2011 Proceedings of IEEE Computer Vision, Pattern Recognition Colorado, Springs, June 21-252011 p1313

    [7]

    Jia X, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1822

    [8]

    Liu H P, Sun F C 2010 Proceedings of International Conference on Pattern Recognition Istanbul, Turkey, August 23-26, 2010 p1702

    [9]

    Wang B X, Zhao B J, Tang L B, Wang S G, Wu J H 2014 Acta Phys. Sin. 63 234201 (in Chinese) [王保宪, 赵保军, 唐林波, 王水根, 吴京辉2014物理学报63 234201]

    [10]

    Liu B Y, Yang L, Huang J Z, Meer P, Gong L G, Kulikowski C 2010 Proceedings of the 11th European Conference on Computer Vision Crete, Greece, September 5-11, 2010 p624

    [11]

    Wang Q, Chen F, Xu W L, Yang M H 2012 Proceedings of I EE E Workshop on Applications of Computer Vision Breckenridge, C O, January 9-11, 2012 p425

    [12]

    Bao C L, Wu Y, Ling H B, Ji H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1830

    [13]

    Pérez P, Hue C, Vermaak J, Gangnet M 2002 European Conference on Computer Vision Copenhagen, Denmark, May 28-31, 2002 p661

    [14]

    Zhang T Z, Ghanem B, Liu S, Ahuja N 2013 Int. J. Comput. Vision 101 367

    [15]

    Zhuang B H, Lu H C, Xiao Z Y, Wang D 2014 IEEE Trans. Image Proces. 23 1872

    [16]

    Zhong W, Lu H C, Yang M H 2012 Proceedings of IEEE Computer Vision, Pattern Recognition Providence, Rhode Island, June 16-21, 2012 p1838

    [17]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [18]

    Donoho D L, T SA IG Y 2006 Signal Proces. 86 533

    [19]

    Rao S R, Tron R, Vidal R, Ma Y 2009 IEEE Trans. PAMI. 32 1832

    [20]

    Wang D, Lu H C 2012 IEEE Signal Proces. Lett. 19 711

    [21]

    Yan H, Yang J 2016 Neurocomputing 173 1936

    [22]

    Efron B, Hastie T, Johnstone I, Tibshirani R 2004 Ann. Statist. 32 407

    [23]

    Hale E T, Yin W, Zhang Y 2008 SIAM J. Opt. 19 1107

    [24]

    Wu Y, Lim J, Yang M H 2013 Proceedings of IEEE Computer Vision, Pattern Recognition Portland, Oregon, June 23-28, 2013 p2411

    [25]

    Ross D, Lim J, Lin R, Yang M H 2008 Int. J. Comput. Vision 77 125

    [26]

    Kalal Z, Mikolajczyk K, Matas J 2012 IEEE Trans. on PAMI 34 1409

    [27]

    Everingham M, Gool L V, Williams C K I, Winn J M, Zisserman A 2010 Int. J. Comput. Vision 88 303

  • [1] Liu Jie,  Zhang Jian-Xun,  Dai Yu. Image enhancement based on multi-guided filtering. Acta Physica Sinica, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [2] Zhang Wen-Jie, Wang Shi-Yuan, Feng Ya-Li, Feng Jiu-Chao. Huber-based high-degree cubature Kalman tracking algorithm. Acta Physica Sinica, 2016, 65(8): 088401. doi: 10.7498/aps.65.088401
    [3] Duan Xiao-Liang, Wang Yi-Bo, Yang Hui-Zhu. Regularized seismic velocity inversion based on inverse scattering theory. Acta Physica Sinica, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [4] Gao Wen, Tang Yang, Zhu Ming. Research on semi-supervising learning algorithm for target model updating in target tracking. Acta Physica Sinica, 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [5] Lu Zhi-Yu, Wang Da-Ming, Wang Jian-Hui, Wang Yue. A tracking algorithm based on orthogonal cubature Kalman filter with TDOA and FDOA. Acta Physica Sinica, 2015, 64(15): 150502. doi: 10.7498/aps.64.150502
    [6] Su Yong, Fan Dong-Ming, You Wei. Gravity field model calculated by using the GOCE data. Acta Physica Sinica, 2014, 63(9): 099101. doi: 10.7498/aps.63.099101
    [7] Liu Guang-Dong, Zhang Kai-Yin. A time-domain Gauss-Newton inversion algorithm for solving two-dimensional electromagnetic inverse scattering problems. Acta Physica Sinica, 2014, 63(3): 034102. doi: 10.7498/aps.63.034102
    [8] Gao Wen, Tang Yang, Zhu Ming. Study on the cascade classifier in target detection under complex background. Acta Physica Sinica, 2014, 63(9): 094204. doi: 10.7498/aps.63.094204
    [9] Wang Bao-Xian, Zhao Bao-Jun, Tang Lin-Bo, Wang Shui-Gen, Wu Jing-Hui. Robust visual tracking algorithm based on bidirectional sparse representation. Acta Physica Sinica, 2014, 63(23): 234201. doi: 10.7498/aps.63.234201
    [10] Wang Xin-Ying, Han Min, Wang Ya-Nan. Analysis of noisy chaotic time series prediction error. Acta Physica Sinica, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [11] Zhao Yan-Lai, Huang Si-Xun, Du Hua-Dong. Wind partitioning and reconstruction with variational method in a limited domain I: theoretical frame and simulation experiments. Acta Physica Sinica, 2013, 62(3): 039204. doi: 10.7498/aps.62.039204
    [12] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [13] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [14] Long Zhi-Yong, Shi Han-Qing, Huang Si-Xun. A new ldea of cloud motion wind derived from satellite images. Acta Physica Sinica, 2011, 60(5): 059202. doi: 10.7498/aps.60.059202
    [15] Zhao Xiao-Feng, Huang Si-Xun. Remote sensing of atmospheric refractivity from field measurements of vertical receiver array. Acta Physica Sinica, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [16] Huang Si-Xun, Du Hua-Dong, Zhong Ji-Qin, Zhao Yan-Lai. Regularization method of assimilating Doppler radar data and its influence on precipitation forecast. Acta Physica Sinica, 2011, 60(7): 079202. doi: 10.7498/aps.60.079202
    [17] Jiang Zhu-Hui, Huang Si-Xun, He Ran, Zhou Chen-Teng. Regularization method to retrieve synthetic aperture radar sea surface wind. Acta Physica Sinica, 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [18] Liu Guang-Dong, Zhang Ye-Rong. Time-domain inverse scattering problem for two-dimensional frequency-dispersive lossy media. Acta Physica Sinica, 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [19] Sheng Zheng, Huang Si-Xun. Ocean duct inversion from radar clutter using variation adjoint and regularization method (Ⅱ): inversion experiment. Acta Physica Sinica, 2010, 59(6): 3912-3916. doi: 10.7498/aps.59.3912
    [20] Sheng Zheng, Huang Si-Xun. Ocean duct inversion from radar clutter using variation adjoint and regularization method (Ⅰ): Theoretical part. Acta Physica Sinica, 2010, 59(3): 1734-1739. doi: 10.7498/aps.59.1734
Metrics
  • Abstract views:  6281
  • PDF Downloads:  471
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2016
  • Accepted Date:  14 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回