Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modification of the photocatalytic properties of anatase TiO2 (101) surface by doping transition metals

Su Qiao-Zhi Han Qing-Zhen Gao Jin-Hua Wen Hao Jiang Zhao-Tan

Citation:

Modification of the photocatalytic properties of anatase TiO2 (101) surface by doping transition metals

Su Qiao-Zhi, Han Qing-Zhen, Gao Jin-Hua, Wen Hao, Jiang Zhao-Tan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Exploring new types of photocatalysts and modifying the photocatalytic activity have attracted more and more extensive attention in many research fields. Anatase TiO2, a promising photocatalyst widely studied, can only absorb the ultraviolet light and thus only make little use of the power in visible light. Therefore, it is an urgent task to make theoretical and experimental investigations on the photocatalytic mechanism in anatase TiO2 and then improve its visible light response so as to utilize more visible light. Now, in the present paper, we carry out a systematic theoretical investigation on modifying the photocatalytic properties of the anatase TiO2 (101) surface via doping transition metal neutral atoms such as Fe, Ni, Pd, Pt, Cu, Ag, and Au by using the plane wave ultrasoft pseudopotential method of the density functional theory. The dependence of the macroscopic catalytic activity on electronic structure and optoelectronic property is uncovered by making a comparative analysis of the geometric structures, the electronic structures, and the optical properties of the undoped and doped anatase TiO2 (101) surfaces. Our numerical results show that doping certain transition metals can suppress the band gap or induce extra impurity energy levels, which is beneficial to improving the visible light response of the TiO2 (101) surface in different ways. In most cases, the new impurity energy levels will appear in the original band gap, which comes from the contribution of the d electronic states in the transition metal atoms. Moreover, the photocatalytic activity of the TiO2 (101) surface can be changed differently by doping different transition metal atoms, which is closely dependent on the bandgap width, Fermi energy, the impurity energy level, and the electron configuration of the outermost shell of the dopants. This research should be an instructive reference for designing TiO2 (101) photocatalyst and improving its capability, and also helpful for understanding doping transition metal atoms in other materials.
      Corresponding author: Han Qing-Zhen, qzhan@ipe.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504374, 11274040) and the Innovation Program of Institute of Process Engineering Chinese Academy of Sciences (Grant No. COM2015A001).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Hoffmann M R, Martin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69

    [3]

    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1997 Nature 388 431

    [4]

    Huang X H, Tang Y C 2013 TiO2 Photocatalysis Technology and its Applications in the Field of Environment (Hefei: Hefei University of Technology Press) pp242-252 (in Chinese) [黄显怀, 唐玉朝 2013 TiO2光催化技术及其在环境领域的应用 (合肥: 合肥工业大学出版社) 第242252页]

    [5]

    Palmisano G, Augugliaro V, Pagliaro M, Palmisano L 2007 Chem. Commun. 33 3425

    [6]

    Ma H F, Wang X R, Ma F, Ding Y G, Wang Z 2013 Electr. Comp. Mater. 32 1 (in Chinese) [马洪芳, 王小蕊, 马芳, 丁严广, 王振 2013 电子元件与材料 32 1]

    [7]

    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1998 Adv. Mater. 10 135

    [8]

    Li X Z, Li F B, Yang C L, Ge W K 2001 J. Photochem. Photobiol. A 141 209

    [9]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [10]

    Yu X B, Wang G H, Luo Y Q, Chen X H, Zhu J 2000 J. Shanghai Norm. Univ. Nat. Sci. 29 75 (in Chinese) [余锡宾, 王桂华, 罗衍庆, 陈秀红, 朱建 2000 上海师范大学学报 29 75]

    [11]

    Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys.-Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]

    [12]

    Wang Y, Hao Y, Cheng H, Ma J, Xu B, Li W, Cai S 1999 J. Mater. Sci. Mater. Electron. 34 2773

    [13]

    Huang P, Shang B, Li L, Lei J 2015 Chin. J. Chem. Phys. 28 681

    [14]

    Samat M H, Hussin N H, Taib M F M, Yaakob M K, Samsi N S, Aziz S S S A, Yahya M Z A, Ali A M M 2016 Mater. Sci. Forum. 846 726

    [15]

    Li C, Zheng Y J, Fu S N, Jiang H W, Wang D 2016 Acta Phys. Sin. 65 037102 (in Chinese) [李聪, 郑友进, 付斯年, 姜宏伟, 王丹 2016 物理学报 65 037102]

    [16]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [17]

    Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409

    [18]

    Lazzeri M, Vittadini A, Selloni A 2002 Phys. Rev. B 65 119901

    [19]

    Chen Z H, Fang X M, Zhang Z G 2013 Chem. Ind. Eng. Prog. 32 1320 (in Chinese) [陈志鸿, 方晓明, 张正国 2013 化工进展 32 1320]

    [20]

    Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal Chem. 473 250

    [21]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46

    [22]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [23]

    John P P, Mel L 1983 Phys. Rev. Lett. 51 1884

    [24]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [25]

    Li Z B, Wang X, Fan S W 2014 Acta Sci. Nat. Univ. Sunyatseni 53 114 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 中山大学学报: 自然科学版 53 114]

    [26]

    Boschloo G K, Goossens A, Schoonman J 1997 J. Electrochem. Soc. 144 1311

    [27]

    Ying Y, Feng Q, Wang W, Wang Y 2013 J. Semicond. 34 073004

    [28]

    Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [29]

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [30]

    Zhao Z, Liu Q 2008 J. Phys. D: Appl. Phys. 41 085417

    [31]

    He C, Hu Y, Hu X, Larbot A 2002 Appl. Surf. Sci. 200 239

    [32]

    Yuan Y, Ding J, Xu J, Deng J, Guo J 2010 J. Nanosci. Nanotechnol. 10 4868

    [33]

    Sharma S D, Singh D, Saini K K, Kant C, Sharma V, Jain S C, Sharma C P 2006 Appl. Catal. A 314 40

    [34]

    Zhou M, Yu J, Cheng B 2006 J. Hazard. Mater. 137 1838

    [35]

    Li Z, Shen W, He W, Zu X 2008 J. Hazard. Mater. 155 590

    [36]

    Lin H J, Yang T S, Hsi C S, Wang M C, Lee K C 2014 Ceram. Int. 40 10633

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Hoffmann M R, Martin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69

    [3]

    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1997 Nature 388 431

    [4]

    Huang X H, Tang Y C 2013 TiO2 Photocatalysis Technology and its Applications in the Field of Environment (Hefei: Hefei University of Technology Press) pp242-252 (in Chinese) [黄显怀, 唐玉朝 2013 TiO2光催化技术及其在环境领域的应用 (合肥: 合肥工业大学出版社) 第242252页]

    [5]

    Palmisano G, Augugliaro V, Pagliaro M, Palmisano L 2007 Chem. Commun. 33 3425

    [6]

    Ma H F, Wang X R, Ma F, Ding Y G, Wang Z 2013 Electr. Comp. Mater. 32 1 (in Chinese) [马洪芳, 王小蕊, 马芳, 丁严广, 王振 2013 电子元件与材料 32 1]

    [7]

    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1998 Adv. Mater. 10 135

    [8]

    Li X Z, Li F B, Yang C L, Ge W K 2001 J. Photochem. Photobiol. A 141 209

    [9]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [10]

    Yu X B, Wang G H, Luo Y Q, Chen X H, Zhu J 2000 J. Shanghai Norm. Univ. Nat. Sci. 29 75 (in Chinese) [余锡宾, 王桂华, 罗衍庆, 陈秀红, 朱建 2000 上海师范大学学报 29 75]

    [11]

    Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys.-Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]

    [12]

    Wang Y, Hao Y, Cheng H, Ma J, Xu B, Li W, Cai S 1999 J. Mater. Sci. Mater. Electron. 34 2773

    [13]

    Huang P, Shang B, Li L, Lei J 2015 Chin. J. Chem. Phys. 28 681

    [14]

    Samat M H, Hussin N H, Taib M F M, Yaakob M K, Samsi N S, Aziz S S S A, Yahya M Z A, Ali A M M 2016 Mater. Sci. Forum. 846 726

    [15]

    Li C, Zheng Y J, Fu S N, Jiang H W, Wang D 2016 Acta Phys. Sin. 65 037102 (in Chinese) [李聪, 郑友进, 付斯年, 姜宏伟, 王丹 2016 物理学报 65 037102]

    [16]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [17]

    Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409

    [18]

    Lazzeri M, Vittadini A, Selloni A 2002 Phys. Rev. B 65 119901

    [19]

    Chen Z H, Fang X M, Zhang Z G 2013 Chem. Ind. Eng. Prog. 32 1320 (in Chinese) [陈志鸿, 方晓明, 张正国 2013 化工进展 32 1320]

    [20]

    Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal Chem. 473 250

    [21]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46

    [22]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [23]

    John P P, Mel L 1983 Phys. Rev. Lett. 51 1884

    [24]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [25]

    Li Z B, Wang X, Fan S W 2014 Acta Sci. Nat. Univ. Sunyatseni 53 114 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 中山大学学报: 自然科学版 53 114]

    [26]

    Boschloo G K, Goossens A, Schoonman J 1997 J. Electrochem. Soc. 144 1311

    [27]

    Ying Y, Feng Q, Wang W, Wang Y 2013 J. Semicond. 34 073004

    [28]

    Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [29]

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [30]

    Zhao Z, Liu Q 2008 J. Phys. D: Appl. Phys. 41 085417

    [31]

    He C, Hu Y, Hu X, Larbot A 2002 Appl. Surf. Sci. 200 239

    [32]

    Yuan Y, Ding J, Xu J, Deng J, Guo J 2010 J. Nanosci. Nanotechnol. 10 4868

    [33]

    Sharma S D, Singh D, Saini K K, Kant C, Sharma V, Jain S C, Sharma C P 2006 Appl. Catal. A 314 40

    [34]

    Zhou M, Yu J, Cheng B 2006 J. Hazard. Mater. 137 1838

    [35]

    Li Z, Shen W, He W, Zu X 2008 J. Hazard. Mater. 155 590

    [36]

    Lin H J, Yang T S, Hsi C S, Wang M C, Lee K C 2014 Ceram. Int. 40 10633

  • [1] Ye Jian-Feng, Qing Ming-Zhe, Xiao Qing-Quan, Wang Ao-Shuang, He An-Na, Xie Quan. First-principles study of electronic structure , magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials. Acta Physica Sinica, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [2] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] Cheng Li, Wang De-Xing, Zhang Yang, Su Li-Ping, Chen Shu-Yan, Wang Xiao-Feng, Sun Peng, Yi Chong-Gui. Electronic structure and optical properties of Cu-O co-doped AlN. Acta Physica Sinica, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [4] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [5] Yu Zhi-Qiang, Zhang Chang-Hua, Lang Jian-Xun. The electronic structure and optical properties of P-doped silicon nanotubes. Acta Physica Sinica, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [6] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [7] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [8] Li Zong-Bao, Wang Xia, Jia Li-Chao. Synergistic effects in Fe/N codoped anatase TiO2 (101) surface:a theoretical study based on density functional theory calculation. Acta Physica Sinica, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [9] Li Chun-Xia, Dang Sui-Hu. Doped with Ag and Zn effects on electronic structure and optical properties of CdS. Acta Physica Sinica, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [10] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] Zhang Xiao-Chao, Zhao Li-Jun, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Electronic structures and optical properties of transition metals (Fe, Co, Ni, Zn) doped rutile TiO2. Acta Physica Sinica, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [12] Chen Qiu-Yun, Lai Xin-Chun, Wang Xiao-Ying, Zhang Yong-Bin, Tan Shi-Yong. First-principles study of the electronic structure and optical properties of UO2. Acta Physica Sinica, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [13] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [14] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [15] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [16] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  7030
  • PDF Downloads:  320
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2016
  • Accepted Date:  14 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回