Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural derivative and electronic properties of zigzag carbon nanotubes

Liu Ya-Nan Lu Jun-Zhe Zhu Heng-Jiang Tang Yu-Chao Lin Xiang Liu Jing Wang Ting

Citation:

Structural derivative and electronic properties of zigzag carbon nanotubes

Liu Ya-Nan, Lu Jun-Zhe, Zhu Heng-Jiang, Tang Yu-Chao, Lin Xiang, Liu Jing, Wang Ting
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is well known that carbon nanotubes (CNTs) have received much attention since they were discovered. With the rapid development of carbon-based electronics and quantum computers, CNTs are required to have their unique physical and chemical properties in many fields. However, due to their uncertain mechanism of growth, it is difficult to achieve high production of CNTs with certain controlled structures. In this paper, we construct the nuclei of specific single- and double-walled zigzag CNTs and study their structural derivatives and electronic properties by using the density functional theory. According to the study of carbon clusters, we find some stable cage-like clusters containing zigzag structure which can be used as the nucleus of the corresponding single-walled CNTs. The nucleus of the double-walled CNTs is composed of the corresponding nucleus of single-walled CNTs. It is possible to obtain a tubular cluster by optimizing the structure of the nucleus with accumulating carbon atoms at one end. The results show that the pentagonal structure plays a key role in the growing of tubular clusters. We find that the tubular clusters are grown in the form of global reconstruction when the clusters are short, but grown by local reconstruction when the clusters are longer. It can provide a theoretical reference to realize numerous CNTs with certain structures. Furthermore, the average binding energy (Eb) of tubular clusters is studied, and we find that their Eb is more and more stable and then close to the corresponding CNTs. At the same time, the study of the thermodynamic quantities of tubular clusters shows that their structures are thermodynamically stable. In addition, the infinite zigzag CNTs can be obtained by using the periodic boundary conditions. Furthermore, the energy bands and density of states are calculated to study their electronic properties. The results show that the energy band structures of zigzag CNTs are closely related to the chiral index n. For zigzag CNTs (n, 0) and (n, 0)@(2n, 0), they show a metal property or narrow band gap semiconductor when n=3q (q is an integer); when n3q, they show a wide band gap semiconductor, and the band gap decreases with the diameter increasing. It is interesting that the two metallic single-walled CNTs (SWCNTs) are nested to obtain metallic double-walled (CNTs) DWCNTs, while the two semiconducting SWCNTs are nested to obtain semiconducting DWCNTs. However, due to the obvious curvature effect, small-diameter CNTs (4, 0), (4, 0)@(8, 0) and (5, 0)@(10, 0) show the metal properties but CNT (6, 0)@(12, 0) shows the obvious semiconductor property.
      Corresponding author: Zhu Heng-Jiang, zhj@xjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464044) and the Mineral Luminescence Materials and their microstructures of Xinjiang Key Laboratory at University of Education Department of Xinjiang Uygur Autonomous Region of China (Grant No. KWFG1506).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Iijima S, Ichihashi T 1993 Nature 364 603

    [3]

    Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249

    [4]

    Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [5]

    Alvarez L, Righi A, Guillard T, Rolsa S, Anglareta E, Laplazea D, Sauvajolaet J L 2000 Chem. Phys. Lett. 316 186

    [6]

    Burda C, Chen X B, Narayanan R, El-Sayed M A 2005 Chem. Rev. 105 1025

    [7]

    Che J, Cagin T, Goddard W 2000 Nat. Nanotech. 11 2083

    [8]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [9]

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta Phys. Sin. 60 017505 (in Chinese) [王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林 2011 物理学报 60 017505]

    [10]

    Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S 1999 J. Appl. Polym. Sci. 74 2605

    [11]

    Kuzumaki T, Ujiie O, Ichinose H, Ito K 2000 Adv. Eng. Mater. 2 416

    [12]

    Service R F 1999 Science 285 682

    [13]

    Collins P G 1997 Science 278 100

    [14]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [15]

    Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z, Zhou W, Xie S 2009 Adv. Mater. 21 603

    [16]

    Lin Y M, Appenzeller J, Chen Z, Chen Z G 2005 IEEE Electr. Dev. Lett. 26 823

    [17]

    Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas T P, Li Y, Liu J 2009 Nano Lett. 9 800

    [18]

    de Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535

    [19]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526

    [20]

    Hatta N, Murata K 1994 Chem. Phys. Lett. 217 393

    [21]

    Morales A M, Lieber C M 1998 Science 279 208

    [22]

    Ajayan P M 1999 Chem. Rev. 99 1787

    [23]

    Popov V N 2004 New J. Phys. 6 279

    [24]

    Odom T W, Huang J L, Kim P, Lieber C M 2000 J. Phys. Chem. B 104 2794

    [25]

    Zhao J, Park H, Han J, Lu J P 2004 J. Phys. Chem. B 108 4227

    [26]

    Ding J W, Yan X H, Cao J X, Yang B Q 2003 J. Phys.:-Condens. Matter 15 L439

    [27]

    Fischer J E, Johnson A T 1999 Curr. Opin. Solid St. M. 4 28

    [28]

    Luo J H, Zhang X B, Yu L, Cheng J P, Mi Y H, Liu F 2006 J. Mater. Sci.-Eng. 24 561 (in Chinese) [罗君航, 张孝彬, 李昱, 程继鹏,糜裕宏, 刘芙 2005 材料科学与工程学报 24 561]

    [29]

    Liu B C, Lyu S C, Jung S I, Kang H K, Yang C W, Park J W, Park C Y, Lee C J 2004 Chem. Phys. Lett. 383 104

    [30]

    Cheng H M, Li F, Su G, Pan H Y, He L L, Sun X, Dresselhaus M S 1998 Appl. Phys. Lett. 72 3282

    [31]

    Yao Y, Feng C, Zhang J, Yao Y G, Feng C Q, Zhang J, Liu Z F 2009 Nano Lett. 9 1673

    [32]

    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y 2014 Nature 510 522

    [33]

    Yang F, Wang X, Zhang D, Qi K, Yang J, Xu Z, Li M, Zhao X, Bai X, Li Y 2015 J. Am. Chem. Soc. 137 8688

    [34]

    Yang F, Wang X, Li M, Liu X, Zhao X, Zhang D, Zhang Y, Yang J, Li Y 2016 Acc. Chem. Res. 49 606

    [35]

    Kiang C H 2000 J. Chem. Phys. 113 4763

    [36]

    Yu X, Zhang J, Choi W, Choi J Y, Kim J M, Gan L, Liu Z 2010 Nano Lett. 10 3343

    [37]

    Lu X X, Hu Z 2012 Compos. Part B: Eng. 43 1902

    [38]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [39]

    Jensen F, Toftlund H 1993 Chem. Phys. Lett. 201 89

    [40]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [41]

    Wu H S, Jia J F, Xu X H 2004 Acta Chim. Sin. 62 105

    [42]

    Galli G, Gygi F, Golaz J C 1998 Phys. Rev. B 57 1860

    [43]

    Chen Z, Heine T, Jiao H, Hirsch A, Thiel W, Schleyer P 2004 Chem.-Eur. J. 10 963

    [44]

    Lu X, Chen Z 2006 Chem. Rev. 105 3643

    [45]

    Jin Y F, Hao C 2005 J. Phys. Chem. A 109 2875

    [46]

    Nose S 1991 Prog. Theor. Phys. Supp. 103 1

    [47]

    Liu Z F, Zhu H J, Chen H, Liu L R 2011 Acta Phys.-Chim. Sin. 27 2079

    [48]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702

    [49]

    Ding J W, Yan X H, Cao J X 2002 Phys. Rev. B 66 429

    [50]

    Liu X H, Zhu C C, Zeng F G, He Y N, Bao W X 2006 Acta Phys. Sin. 55 2830 (in Chinese) [刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星 2006 物理学报 55 2830]

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Iijima S, Ichihashi T 1993 Nature 364 603

    [3]

    Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249

    [4]

    Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [5]

    Alvarez L, Righi A, Guillard T, Rolsa S, Anglareta E, Laplazea D, Sauvajolaet J L 2000 Chem. Phys. Lett. 316 186

    [6]

    Burda C, Chen X B, Narayanan R, El-Sayed M A 2005 Chem. Rev. 105 1025

    [7]

    Che J, Cagin T, Goddard W 2000 Nat. Nanotech. 11 2083

    [8]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [9]

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta Phys. Sin. 60 017505 (in Chinese) [王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林 2011 物理学报 60 017505]

    [10]

    Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S 1999 J. Appl. Polym. Sci. 74 2605

    [11]

    Kuzumaki T, Ujiie O, Ichinose H, Ito K 2000 Adv. Eng. Mater. 2 416

    [12]

    Service R F 1999 Science 285 682

    [13]

    Collins P G 1997 Science 278 100

    [14]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [15]

    Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z, Zhou W, Xie S 2009 Adv. Mater. 21 603

    [16]

    Lin Y M, Appenzeller J, Chen Z, Chen Z G 2005 IEEE Electr. Dev. Lett. 26 823

    [17]

    Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas T P, Li Y, Liu J 2009 Nano Lett. 9 800

    [18]

    de Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535

    [19]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526

    [20]

    Hatta N, Murata K 1994 Chem. Phys. Lett. 217 393

    [21]

    Morales A M, Lieber C M 1998 Science 279 208

    [22]

    Ajayan P M 1999 Chem. Rev. 99 1787

    [23]

    Popov V N 2004 New J. Phys. 6 279

    [24]

    Odom T W, Huang J L, Kim P, Lieber C M 2000 J. Phys. Chem. B 104 2794

    [25]

    Zhao J, Park H, Han J, Lu J P 2004 J. Phys. Chem. B 108 4227

    [26]

    Ding J W, Yan X H, Cao J X, Yang B Q 2003 J. Phys.:-Condens. Matter 15 L439

    [27]

    Fischer J E, Johnson A T 1999 Curr. Opin. Solid St. M. 4 28

    [28]

    Luo J H, Zhang X B, Yu L, Cheng J P, Mi Y H, Liu F 2006 J. Mater. Sci.-Eng. 24 561 (in Chinese) [罗君航, 张孝彬, 李昱, 程继鹏,糜裕宏, 刘芙 2005 材料科学与工程学报 24 561]

    [29]

    Liu B C, Lyu S C, Jung S I, Kang H K, Yang C W, Park J W, Park C Y, Lee C J 2004 Chem. Phys. Lett. 383 104

    [30]

    Cheng H M, Li F, Su G, Pan H Y, He L L, Sun X, Dresselhaus M S 1998 Appl. Phys. Lett. 72 3282

    [31]

    Yao Y, Feng C, Zhang J, Yao Y G, Feng C Q, Zhang J, Liu Z F 2009 Nano Lett. 9 1673

    [32]

    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y 2014 Nature 510 522

    [33]

    Yang F, Wang X, Zhang D, Qi K, Yang J, Xu Z, Li M, Zhao X, Bai X, Li Y 2015 J. Am. Chem. Soc. 137 8688

    [34]

    Yang F, Wang X, Li M, Liu X, Zhao X, Zhang D, Zhang Y, Yang J, Li Y 2016 Acc. Chem. Res. 49 606

    [35]

    Kiang C H 2000 J. Chem. Phys. 113 4763

    [36]

    Yu X, Zhang J, Choi W, Choi J Y, Kim J M, Gan L, Liu Z 2010 Nano Lett. 10 3343

    [37]

    Lu X X, Hu Z 2012 Compos. Part B: Eng. 43 1902

    [38]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [39]

    Jensen F, Toftlund H 1993 Chem. Phys. Lett. 201 89

    [40]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [41]

    Wu H S, Jia J F, Xu X H 2004 Acta Chim. Sin. 62 105

    [42]

    Galli G, Gygi F, Golaz J C 1998 Phys. Rev. B 57 1860

    [43]

    Chen Z, Heine T, Jiao H, Hirsch A, Thiel W, Schleyer P 2004 Chem.-Eur. J. 10 963

    [44]

    Lu X, Chen Z 2006 Chem. Rev. 105 3643

    [45]

    Jin Y F, Hao C 2005 J. Phys. Chem. A 109 2875

    [46]

    Nose S 1991 Prog. Theor. Phys. Supp. 103 1

    [47]

    Liu Z F, Zhu H J, Chen H, Liu L R 2011 Acta Phys.-Chim. Sin. 27 2079

    [48]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702

    [49]

    Ding J W, Yan X H, Cao J X 2002 Phys. Rev. B 66 429

    [50]

    Liu X H, Zhu C C, Zeng F G, He Y N, Bao W X 2006 Acta Phys. Sin. 55 2830 (in Chinese) [刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星 2006 物理学报 55 2830]

  • [1] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electronic properties and modulation effects on edge-modified GeS2 nanoribbons. Acta Physica Sinica, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] Xu Yong-Hu, Deng Xiao-Qing, Sun Lin, Fan Zhi-Qiang, Zhang Zhen-Hua. Strain engineering of electronic structure and mechanical switch device for edge modified Net-Y nanoribbons. Acta Physica Sinica, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [3] Zhang Hua-Lin, He Xin, Zhang Zhen-Hua. Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Acta Physica Sinica, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [4] Strain?Engineering of Electronic Structure and Mechanical Switch Device for Edge Modified Net-Y Nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211748
    [5] Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Acta Physica Sinica, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] Liu Hui-Ying, Zhang Xiu-Qin, Fang Yi-Mei, Zhu Zi-Zhong. Structural and electronic properties of T-graphene and its derivatives. Acta Physica Sinica, 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [7] Deng Fa-Ming. Effect of intense laser irradiation on the electronic properties of 6H-SiC. Acta Physica Sinica, 2016, 65(10): 107101. doi: 10.7498/aps.65.107101
    [8] Deng Fa-Ming. Effect of intense laser irradiation on the electronic properties of 2H-SiC. Acta Physica Sinica, 2015, 64(22): 227101. doi: 10.7498/aps.64.227101
    [9] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [10] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [11] Wang Yue, He Xun-Jun, Wu Yu-Ming, Wu Qun, Mei Jin-Shuo, Li Long-Wei, Yang Fu-Xing, Zhao Tuo, Li Le-Wei. Properties of terahertz surface plasmon ploaritons on carbon nanotube film with periodic grating. Acta Physica Sinica, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
    [12] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [13] Qin Wei, Zhang Zhen-Hua, Liu Xin-Hai. Effects of curvature on the electronic structures of single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [14] Wei Yan, Hu Hui-Fang, Wang Zhi-Yong, Cheng Cai-Ping, Chen Nan-Ting, Xie Neng. Theoretical research on the electronic structure and transport properties of nitrogen doping chiral carbon nanotubes. Acta Physica Sinica, 2011, 60(2): 027307. doi: 10.7498/aps.60.027307
    [15] Zhang Li-Juan, Hu Hui-Fang, Wang Zhi-Yong, Wei Yan, Jia Jin-Feng. Study on the electronic structure and optical properties of B-doped single-walled carbon nanotubes for formaldehyde adsorption. Acta Physica Sinica, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [16] Wang Li-Guang, Zhang Hong-Yu, Wang Chang, Terence K. S. W.. Electronic conductance of zigzag single wall carbon nanotube with an implanted Li atom. Acta Physica Sinica, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [17] Xie Yan, Luo Ying, Liu Shao-Jun. The effects of the uniaxial pressure on electronic structures of the (6, 6) single-walled carbon nanotube crystal. Acta Physica Sinica, 2008, 57(7): 4364-4370. doi: 10.7498/aps.57.4364
    [18] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] Liang Jun-Wu, Hu Hui-Fang, Wei Jian-Wei, Peng Ping. Effects of oxygen adsorption on the electronic structure and optical properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [20] ZHANG ZHEN-HUA, PENG JING-CUI, CHEN XIAO-HUA, ZHANG HUA. THE ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF THE CHIRAL TOROIDAL CARBON NANOTUBES. Acta Physica Sinica, 2001, 50(6): 1150-1156. doi: 10.7498/aps.50.1150
Metrics
  • Abstract views:  6870
  • PDF Downloads:  246
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2017
  • Accepted Date:  18 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回