Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of planar shear deformable beam using rotation field curvature formulation

Zhang Da-Yu Luo Jian-Jun Zheng Yin-Huan Yuan Jian-Ping

Citation:

Analysis of planar shear deformable beam using rotation field curvature formulation

Zhang Da-Yu, Luo Jian-Jun, Zheng Yin-Huan, Yuan Jian-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, research on space debris removal technique has received wide attention in aerospace field. Many novel concepts on active flexible debris remover have been proposed, such as flexible flying net, tethered cable manipulator. In view with the high flexibility and large deformation of this kind of structure, the implementation of attitude control is challenging. An accurate dynamic model of highly flexible structure is important and needed. The beam element is the most common element adopted in flexible remover models. So, in this investigation, a rotation field-based curvature shear deformable beam using absolute nodal coordinate formulation (ANCF) (named RB-curvature ANCF beam) is proposed and its geometrically nonlinear characteristic under large deformation motion is studied. Curvature is first derived through planar rotation transformation matrix between the reference frame and current tangent frame of beam centerline, and written as an arc-length derivative of the orientation angle of the tangent vector. Using the geometrically exact beam theory, the strain energy is expressed as an uncoupled form, and the new curvature is adopted to formulate bending energy. Based on the ANCF, the dynamic equation of beam is established, where mass and external force matrices are constant. In order to validate the performance of proposed beam element, other two types of beams are introduced as the comparative models. One is the classical ANCF fully parameterized shear deformable beam derived by continuum mechanics theory, and the other is position field-based curvature ANCF shear deformable beam (named PBcurvature ANCF beam). The PB-curvature model is evaluated by differentiating unit tangent vector of beam centerline with respect to its arc length quoted from differential geometry theory. A series of static analysis, eigenfrequency tests and dynamic analysis are implemented to examine the performance of the proposed element. In static analysis, both small and non-small deformation cases show that the proposed RB-curvature ANCF beam achieves the faster speed, higher precision and good agreement with analytical solution in the case of cantilever beam subjected to a concentrated tip force, which is compared with other two beam models. The eigenfrequency analysis validates RB-curvature ANCF beam in a simply supported beam case that converges to its analytical solution. Meanwhile, the mode shapes of the proposed ANCF beam could be correctly corresponded to vibration state of element with respect to each different eigenfrequency. In the dynamics test, a flexible pendulum case is used and simulation results show that the proposed RB-curvature ANCF beam accords well with ANSYS BEAM3, classical ANCF shear beam and PB-curvature ANCF beam in vertical displacements of tip point and middle point. Since deformation modes are uncoupled in the cross section of proposed beam element, its shear strain is achieved with much better convergence in the case of lower elastic modulus, and shear locking is significantly alleviated, compared with classical ANCF beam. Therefore, RB-curvature ANCF shear deformable beam element proposed in this paper is able to describe accurately geometric nonlinearity in large deformation problem, and can be a potential candidate in the modeling of flexible/rigid-flexible mechanisms.
      Corresponding author: Luo Jian-Jun, jjluo@nwpu.edu.cn
    • Funds: Project supported by the Major Program of National Natural Science Foundation of China (Grant Nos. 61690210, 61690211), and the National Natural Science Foundation of China (Grant Nos. 61603304, 11472213).
    [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51

    [2]

    Nishida S I, Kawamoto S 2011 Acta Astronaut. 68 113

    [3]

    Liu J Y, Lu H 2007 Multibody Syst. Dyn. 18 487

    [4]

    He X S, Song M, Deng F Y 2011 Acta Phys. Sin. 60 044501 (in Chinese) [和兴锁, 宋明, 邓峰岩 2011 物理学报 60 044501]

    [5]

    He X S, Deng F Y, Wang R 2010 Acta Phys. Sin. 59 1428 (in Chinese) [和兴锁, 邓峰岩, 王睿 2010 物理学报 59 1428]

    [6]

    Chen S J, Zhang D G, Hong J Z 2013 Chin. J. Theor. Appl. Mech. 45 251 (in Chinese) [陈思佳, 章定国, 洪嘉振 2013 力学学报 45 251]

    [7]

    Shabana A A 1997 Multibody Syst. Dyn. 1 189

    [8]

    Tian Q, Zhang Y Q, Chen L P, Tan G 2010 Adv. Mech. 40 189 (in Chinese) [田强, 张云清, 陈立平, 覃刚 2010 力学进展 40 189]

    [9]

    Omar M A, Shabana A A 2001 J. Sound Vib. 243 565

    [10]

    Hussein B A, Sugiyama H, Shabana A A 2007 J. Comput. Nonlinear Dyn. 2 146

    [11]

    Dmitrochenko O N, Hussein B A, Shabana A A 2009 J. Comput. Nonlinear Dyn. 4 21002

    [12]

    García-Vallejo D, Mikkola A M, Escalona J L 2007 Nonlinear Dyn. 50 249

    [13]

    Tian Q, Zhang Y Q, Chen L P, Yang J Z 2010 Nonlinear Dyn. 60 489

    [14]

    Gerstmayr J, Matikainen M K, Mikkola A M 2008 Multibody Syst. Dyn. 20 359

    [15]

    Nachbagauer K, Pechstein A S, Irschik H, Gerstmayr J 2011 Multibody Syst. Dyn. 26 245

    [16]

    Nachbagauer K, Gruber P, Gerstmayr J 2013 J. Comput. Nonlinear Dyn. 8 021004

    [17]

    Gerstmayr J, Shabana A A 2006 Nonlinear Dyn. 45 109

    [18]

    Dufva K E, Sopanen J T, Mikkola A M 2005 J. Sound Vib. 280 719

    [19]

    Mikkola A M, Dmitrochenko O, Matikainen M 2009 J. Comput. Nonlinear Dyn. 4 011004

    [20]

    Vesa-Ville A, Hurskainen T, Matikainen M K, Wang J, Mikkola A M 2016 J. Comput. Nonlinear Dyn. 12 041007

    [21]

    Zhang X S, Zhang D G, Chen S J, Hong J Z 2016 Acta Phys. Sin. 64 094501 (in Chinese) [章孝顺, 章定国, 陈思佳, 洪嘉振 2016 物理学报 64 094501]

    [22]

    Goetz A 1970 Introduction to Differential Geometry (Reading, Massachussetts: Addison Wesley Pub. Co) pp56-58

    [23]

    Timoshenko S 1940 Strength of Materials (Part I Elementary Theory and Problems Second Edition) (New York: D.Van Nostrand Co) pp147-148

  • [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51

    [2]

    Nishida S I, Kawamoto S 2011 Acta Astronaut. 68 113

    [3]

    Liu J Y, Lu H 2007 Multibody Syst. Dyn. 18 487

    [4]

    He X S, Song M, Deng F Y 2011 Acta Phys. Sin. 60 044501 (in Chinese) [和兴锁, 宋明, 邓峰岩 2011 物理学报 60 044501]

    [5]

    He X S, Deng F Y, Wang R 2010 Acta Phys. Sin. 59 1428 (in Chinese) [和兴锁, 邓峰岩, 王睿 2010 物理学报 59 1428]

    [6]

    Chen S J, Zhang D G, Hong J Z 2013 Chin. J. Theor. Appl. Mech. 45 251 (in Chinese) [陈思佳, 章定国, 洪嘉振 2013 力学学报 45 251]

    [7]

    Shabana A A 1997 Multibody Syst. Dyn. 1 189

    [8]

    Tian Q, Zhang Y Q, Chen L P, Tan G 2010 Adv. Mech. 40 189 (in Chinese) [田强, 张云清, 陈立平, 覃刚 2010 力学进展 40 189]

    [9]

    Omar M A, Shabana A A 2001 J. Sound Vib. 243 565

    [10]

    Hussein B A, Sugiyama H, Shabana A A 2007 J. Comput. Nonlinear Dyn. 2 146

    [11]

    Dmitrochenko O N, Hussein B A, Shabana A A 2009 J. Comput. Nonlinear Dyn. 4 21002

    [12]

    García-Vallejo D, Mikkola A M, Escalona J L 2007 Nonlinear Dyn. 50 249

    [13]

    Tian Q, Zhang Y Q, Chen L P, Yang J Z 2010 Nonlinear Dyn. 60 489

    [14]

    Gerstmayr J, Matikainen M K, Mikkola A M 2008 Multibody Syst. Dyn. 20 359

    [15]

    Nachbagauer K, Pechstein A S, Irschik H, Gerstmayr J 2011 Multibody Syst. Dyn. 26 245

    [16]

    Nachbagauer K, Gruber P, Gerstmayr J 2013 J. Comput. Nonlinear Dyn. 8 021004

    [17]

    Gerstmayr J, Shabana A A 2006 Nonlinear Dyn. 45 109

    [18]

    Dufva K E, Sopanen J T, Mikkola A M 2005 J. Sound Vib. 280 719

    [19]

    Mikkola A M, Dmitrochenko O, Matikainen M 2009 J. Comput. Nonlinear Dyn. 4 011004

    [20]

    Vesa-Ville A, Hurskainen T, Matikainen M K, Wang J, Mikkola A M 2016 J. Comput. Nonlinear Dyn. 12 041007

    [21]

    Zhang X S, Zhang D G, Chen S J, Hong J Z 2016 Acta Phys. Sin. 64 094501 (in Chinese) [章孝顺, 章定国, 陈思佳, 洪嘉振 2016 物理学报 64 094501]

    [22]

    Goetz A 1970 Introduction to Differential Geometry (Reading, Massachussetts: Addison Wesley Pub. Co) pp56-58

    [23]

    Timoshenko S 1940 Strength of Materials (Part I Elementary Theory and Problems Second Edition) (New York: D.Van Nostrand Co) pp147-148

  • [1] Li Ting, Bi Xiao-Yue, Kong Jing-Wen. Mechanical and thermal properties of phosphorene under shear deformation. Acta Physica Sinica, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [2] Ma Rui-Rui, Chen Liu, Qiu Zhi-Yong. Theoretical studies of low-frequency shear Alfvén waves in reversed shear tokamak plasmas. Acta Physica Sinica, 2023, 72(21): 215207. doi: 10.7498/aps.72.20230255
    [3] Chen Ming-Lai, Liu Hui, Zhang Yu, Luo Xiu-Juan, Ma Cai-Wen, Yue Ze-Lin, Zhao Jing. Spatial domain sparse reconstruction algorithm of sheared beam imaging. Acta Physica Sinica, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [4] Tang Han-Yu, Wang Na, Wu Xue-Bang, Liu Chang-Song. Wet granular matter mechanical spectroscopy under low-frequency shear. Acta Physica Sinica, 2018, 67(20): 206402. doi: 10.7498/aps.67.20180966
    [5] Lu Chang-Ming, Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Liu Hui, Lan Fu-Yang, Cao Bei. Target reconstruction algorithm for four-beam sheared coherent imaging. Acta Physica Sinica, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [6] Zhang Yu-Yang, Leng Yong-Gang, Tan Dan, Liu Jin-Jun, Fan Sheng-Bo. Accurate analysis of magnetic force of bi-stable cantilever vibration energy harvesting system with the theory of magnetizing current. Acta Physica Sinica, 2017, 66(22): 220502. doi: 10.7498/aps.66.220502
    [7] Zhang Cheng-Bin, Yu Cheng, Liu Xiang-Dong, Jin Ou, Chen Yong-Ping. Steady deformation characteristics of double emulsion droplet in shear flow. Acta Physica Sinica, 2016, 65(20): 204704. doi: 10.7498/aps.65.204704
    [8] Zhang Xiao-Shun, Zhang Ding-Guo, Chen Si-Jia, Hong Jia-Zhen. Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Physica Sinica, 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [9] Du Chao-Fan, Zhang Ding-Guo. A meshfree method based on point interpolation for dynamic analysis of rotating cantilever beams. Acta Physica Sinica, 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [10] Wang Xiang, Chao Run-Ze, Guan Ren-Guo, Li Yuan-Dong, Liu Chun-Ming. Theoretical study on the model of metalic melt shearing flow near the surface and its effect on solidification microstructure. Acta Physica Sinica, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [11] Gao Yue, Fu Shi-Hua, Cai Yu-Long, Cheng Teng, Zhang Qing-Chuan. Digital shearography investigation on the out-plane deformation of the Portevin-Le Chatelier bands. Acta Physica Sinica, 2014, 63(6): 066201. doi: 10.7498/aps.63.066201
    [12] Liu Zheng-Kun, Qiu Ke-Qiang, Chen Huo-Yao, Liu Ying, Xu Xiang-Dong, Fu Shao-Jun, Wang Chen, An Hong-Hai, Fang Zhi-Heng. Studies on soft X-ray shearing interferometry with double-frequency gratings. Acta Physica Sinica, 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [13] He Xing-Suo, Song Ming, Deng Feng-Yan. Dynamic modeling of flexible beam with considering shear deformation in non-inertial reference frame. Acta Physica Sinica, 2011, 60(4): 044501. doi: 10.7498/aps.60.044501
    [14] Sun Qi-Cheng, Zhang Guo-Hua, Wang Bo, Wang Guang-Qian. Shear modulus of semi-flexible networks in two dimensions. Acta Physica Sinica, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [15] Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da, Chen Da-Nian, Wang Huan-Ran. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [16] Ruan Kai, Zhang Chun-Min, Zhao Bao-Chang. Exact calculation of the optical path difference and lateral displacement of modified large optical path difference Sagnac interferometer in full view field used in upper atmospheric wind field measurement. Acta Physica Sinica, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [17] Hua Jing-Song, Jing Fu-Qian, Tan Hua, Zhuo Xian-Ming. A method to estimate the temperature coefficient for shear modulus. Acta Physica Sinica, 2005, 54(1): 246-250. doi: 10.7498/aps.54.246
    [18] Hu Jian-Bo, Yu Yu-Ying, Dai Cheng-Da, Tan Hua. Shear modulus of aluminum under shock loading. Acta Physica Sinica, 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
    [19] QIANG WEN-CHAO. GLOBAL DEFORMATION GEOMETRY OFA SELF-GRAVITATIONAL ROTATIONAL BALL. Acta Physica Sinica, 2001, 50(9): 1643-1647. doi: 10.7498/aps.50.1643
    [20] FU XIN-YU, DONG JIA-QI, YING CHUN-TONG, LIU GUANG-JUN. PARTICLE TRANSPORT FROM TURBULENCE DRIVEN BY-PARALLEL VELOCITY SHEAR. Acta Physica Sinica, 1997, 46(3): 474-480. doi: 10.7498/aps.46.474
Metrics
  • Abstract views:  5831
  • PDF Downloads:  212
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2016
  • Accepted Date:  06 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回