- 
				Phosphorene, a new two-dimensional material beyond graphene, has received increasing attention in recent years owing to its superior physical properties of significant utility. Herein we carry out molecular dynamics simulations to systematically study the mechanical and thermal properties of phosphorene under shear loadings. It is found that the shear modulus of phosphorene is about 22 GPa in both the armchair direction and zigzag direction. The fracture strength and ultimate strain of phosphorene can be significantly reduced owing to stronger thermal vibrations of atoms at a higher temperature. The thermal conductivity of pristine phosphorene at room temperature is obtained, specifically, it is 18.57 W·m–1·K–1 along the armchair direction and 52.52 W·m–1·K–1 in the zigzag direction. When either an armchair- or a zigzag-oriented shear strain is applied, the armchair-oriented thermal conductivity decreases monotonically with the strain increasing. Whereas the zigzag-oriented thermal conductivity exhibits a non-monotonic behavior. The strain-induced redshift occurs in the high-frequency phonons of out-of-plane flexural modes in the phonon density of states of the sheared phosphorene. In addition, the buckled structure of phosphorene will lead the deformation characteristics under the shear strain differ from those of the planar structure such as graphene, which has a significant influence on the lattice anharmonicity and phonon scattering. It is believed that the interplay between the shift of phonon density of states and the change of phonon scattering channels results in the unique thermal transport behavior of phosphorene under shear deformation. The findings provide an insight into the understanding of the mechanical and thermal properties of phosphorene, and have significance for the future applications in phosphorene-based novel devices.- 
										Keywords:
										
- phosphorene /
- shear deformation /
- thermal conductivity /
- molecular dynamics
 [1] Geim A K 2009 Science 324 1530  Google Scholar Google Scholar[2] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766  Google Scholar Google Scholar[3] Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091  Google Scholar Google Scholar[4] Lin Y, Connellb J W 2012 Nanoscale 4 6908  Google Scholar Google Scholar[5] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033  Google Scholar Google Scholar[6] Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M 2015 Small 11 640  Google Scholar Google Scholar[7] Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A H C 2016 Nat. Rev. Mater. 1 16061  Google Scholar Google Scholar[8] Batmunkh M, Bat-Erdene M, Shapter J G 2016 Adv. Mater. 28 8586  Google Scholar Google Scholar[9] Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678  Google Scholar Google Scholar[10] Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439  Google Scholar Google Scholar[11] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501  Google Scholar Google Scholar[12] Jia P Z, Xie Z X, Deng Y X, Zhang Y, Tang L M, Zhou W X, Chen K Q 2022 Appl. Phys. Lett. 121 043901  Google Scholar Google Scholar[13] Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829  Google Scholar Google Scholar[14] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033  Google Scholar Google Scholar[15] Khandelwal A, Mani K, Karigerasi M H, Lahiri I 2017 Mater. Sci. Eng. B 221 17  Google Scholar Google Scholar[16] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotech. 9 372  Google Scholar Google Scholar[17] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393  Google Scholar Google Scholar[18] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475  Google Scholar Google Scholar[19] Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319  Google Scholar Google Scholar[20] Jiang J W, Park H S 2014 J. Phys. D:Appl. Phys. 47 385304  Google Scholar Google Scholar[21] Sha Z D, Pei Q X, Ding Z, Jiang J W, Zhang Y W 2015 J. Phys. D: Appl. Phys. 48 395303  Google Scholar Google Scholar[22] Sha Z D, Pei Q X, Zhang Y Y, Zhang Y W 2016 Nanotech. 27 315704  Google Scholar Google Scholar[23] Li L, Yang J 2017 Nanotech. 28 475701  Google Scholar Google Scholar[24] Qin G, Hu M 2018 Small 14 1702465  Google Scholar Google Scholar[25] Hong Y, Zhang J, Zeng X C 2018 Chin. Phys. B 27 036501  Google Scholar Google Scholar[26] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854  Google Scholar Google Scholar[27] Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716  Google Scholar Google Scholar[28] Ong Z Y, Cai Y, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 25272  Google Scholar Google Scholar[29] Zhang Y Y, Pei Q X, Jiang J W, Wei N, Zhang Y W 2016 Nanoscale 8 483  Google Scholar Google Scholar[30] Liu B, Bai L, Korznikova E A, Dmitriev S V, Law A W K, Zhou K 2017 J. Phys. Chem. C 121 13876  Google Scholar Google Scholar[31] Wei Q, Peng X 2014 Appl. Phys. Lett. 104 251915  Google Scholar Google Scholar[32] Yang Z, Zhao J, Wei N 2015 Appl. Phys. Lett. 107 023107  Google Scholar Google Scholar[33] Gamil M, Zeng Q H, Zhang Y Y 2020 Phys. Lett. A 384 126784  Google Scholar Google Scholar[34] Hatam-Lee S M, Peer-Mohammadi H, Rajabpour A 2021 Mater. Today Commun. 26 101796  Google Scholar Google Scholar[35] Mahnama M, Meshkinghalam M, Ozmaian M 2022 J. Phys.: Condens. Matter 34 075403  Google Scholar Google Scholar[36] Li T 2021 Physica E 131 114761  Google Scholar Google Scholar[37] Plimpton S 1995 J. Comput. Phys. 117 1  Google Scholar Google Scholar[38] Jiang J W 2015 Nanotech. 26 315706  Google Scholar Google Scholar[39] Kheirkhah A H, Iranizad E S, Raeisi M, Rajabpour A 2014 Solid State Commun. 177 98  Google Scholar Google Scholar[40] Zhang C, Hao X L, Wang C X, Wei N, Rabczuk T 2017 Sci. Rep. 7 41398  Google Scholar Google Scholar[41] Zhao J, Jiang J W, Rabczuk T 2013 Appl. Phys. Lett. 103 231913  Google Scholar Google Scholar[42] Li T, Tang Z, Huang Z, Yu J 2017 Physica E 85 137  Google Scholar Google Scholar[43] Xu K, Fan Z, Zhang J, Wei N, Ala-Nissila T 2018 Modell. Simul. Mater. Sci. Eng. 26 085001  Google Scholar Google Scholar[44] Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L 2017 Adv. Mater. 29 1603756  Google Scholar Google Scholar[45] Hu M, Zhang X, Poulikakos D 2013 Phys. Rev. B 87 195417  Google Scholar Google Scholar
- 
				
    
    
表 1 磷烯的剪切力学性能 Table 1. Mechanical properties of phosphorene under shear loading. 
- 
				
[1] Geim A K 2009 Science 324 1530  Google Scholar Google Scholar[2] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766  Google Scholar Google Scholar[3] Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091  Google Scholar Google Scholar[4] Lin Y, Connellb J W 2012 Nanoscale 4 6908  Google Scholar Google Scholar[5] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033  Google Scholar Google Scholar[6] Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M 2015 Small 11 640  Google Scholar Google Scholar[7] Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A H C 2016 Nat. Rev. Mater. 1 16061  Google Scholar Google Scholar[8] Batmunkh M, Bat-Erdene M, Shapter J G 2016 Adv. Mater. 28 8586  Google Scholar Google Scholar[9] Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678  Google Scholar Google Scholar[10] Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439  Google Scholar Google Scholar[11] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501  Google Scholar Google Scholar[12] Jia P Z, Xie Z X, Deng Y X, Zhang Y, Tang L M, Zhou W X, Chen K Q 2022 Appl. Phys. Lett. 121 043901  Google Scholar Google Scholar[13] Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829  Google Scholar Google Scholar[14] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033  Google Scholar Google Scholar[15] Khandelwal A, Mani K, Karigerasi M H, Lahiri I 2017 Mater. Sci. Eng. B 221 17  Google Scholar Google Scholar[16] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotech. 9 372  Google Scholar Google Scholar[17] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393  Google Scholar Google Scholar[18] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475  Google Scholar Google Scholar[19] Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319  Google Scholar Google Scholar[20] Jiang J W, Park H S 2014 J. Phys. D:Appl. Phys. 47 385304  Google Scholar Google Scholar[21] Sha Z D, Pei Q X, Ding Z, Jiang J W, Zhang Y W 2015 J. Phys. D: Appl. Phys. 48 395303  Google Scholar Google Scholar[22] Sha Z D, Pei Q X, Zhang Y Y, Zhang Y W 2016 Nanotech. 27 315704  Google Scholar Google Scholar[23] Li L, Yang J 2017 Nanotech. 28 475701  Google Scholar Google Scholar[24] Qin G, Hu M 2018 Small 14 1702465  Google Scholar Google Scholar[25] Hong Y, Zhang J, Zeng X C 2018 Chin. Phys. B 27 036501  Google Scholar Google Scholar[26] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854  Google Scholar Google Scholar[27] Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716  Google Scholar Google Scholar[28] Ong Z Y, Cai Y, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 25272  Google Scholar Google Scholar[29] Zhang Y Y, Pei Q X, Jiang J W, Wei N, Zhang Y W 2016 Nanoscale 8 483  Google Scholar Google Scholar[30] Liu B, Bai L, Korznikova E A, Dmitriev S V, Law A W K, Zhou K 2017 J. Phys. Chem. C 121 13876  Google Scholar Google Scholar[31] Wei Q, Peng X 2014 Appl. Phys. Lett. 104 251915  Google Scholar Google Scholar[32] Yang Z, Zhao J, Wei N 2015 Appl. Phys. Lett. 107 023107  Google Scholar Google Scholar[33] Gamil M, Zeng Q H, Zhang Y Y 2020 Phys. Lett. A 384 126784  Google Scholar Google Scholar[34] Hatam-Lee S M, Peer-Mohammadi H, Rajabpour A 2021 Mater. Today Commun. 26 101796  Google Scholar Google Scholar[35] Mahnama M, Meshkinghalam M, Ozmaian M 2022 J. Phys.: Condens. Matter 34 075403  Google Scholar Google Scholar[36] Li T 2021 Physica E 131 114761  Google Scholar Google Scholar[37] Plimpton S 1995 J. Comput. Phys. 117 1  Google Scholar Google Scholar[38] Jiang J W 2015 Nanotech. 26 315706  Google Scholar Google Scholar[39] Kheirkhah A H, Iranizad E S, Raeisi M, Rajabpour A 2014 Solid State Commun. 177 98  Google Scholar Google Scholar[40] Zhang C, Hao X L, Wang C X, Wei N, Rabczuk T 2017 Sci. Rep. 7 41398  Google Scholar Google Scholar[41] Zhao J, Jiang J W, Rabczuk T 2013 Appl. Phys. Lett. 103 231913  Google Scholar Google Scholar[42] Li T, Tang Z, Huang Z, Yu J 2017 Physica E 85 137  Google Scholar Google Scholar[43] Xu K, Fan Z, Zhang J, Wei N, Ala-Nissila T 2018 Modell. Simul. Mater. Sci. Eng. 26 085001  Google Scholar Google Scholar[44] Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L 2017 Adv. Mater. 29 1603756  Google Scholar Google Scholar[45] Hu M, Zhang X, Poulikakos D 2013 Phys. Rev. B 87 195417  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 5063
- PDF Downloads: 66
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							