Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain

Li Yao-Long Li Zhe Li Song-Yuan Zhang Ren-Liang

Citation:

Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain

Li Yao-Long, Li Zhe, Li Song-Yuan, Zhang Ren-Liang
PDF
HTML
Get Citation
  • The interlayer bonding of graphene is a method of modifying graphene, which can change the mechanical property and conductivity of graphene, but also affect its thermal properties. In this paper, the non-equilibrium molecular dynamics method is used to study the thermal conductivity of bilayer graphene nanoribbon which is local carbon sp3 hybridization (covalent bond formed between layers) under different concentration and angle of interlayer covalent bond chain and different tensile strain. The mechanism of the change of the thermal conductivity of bilayer graphene nanoribbon is analyzed through the density of phonon states. The results are as follows. The thermal conductivity of bilayer graphene nanoribbon decreases with the increase of the interlayer covalent bond concentration due to the intensification of phonon scattering and the reduction of phonon group velocities and effective phonon mean free path. Moreover, the decrease rate of thermal conductivity depends on the distribution angle of covalent bond chain. With the increase of interlayer covalent bond concentration, when the interlayer covalent bond chain is parallel to the direction of heat flow, the thermal conductivity decreases slowest because the heat transfer channel along the heat flow direction is gradually affected; when the interlayer covalent bond chain is at an angle with respect to the direction of heat flow, the thermal conductivity decreases more rapidly, and the larger the angle, the faster the thermal conductivity decreases. The rapid decline of thermal conductivity is due to the formation of interfacial thermal resistance at the interlayer covalent bond chain, where strong phonon-interface scattering occurs. In addition, it is found that the thermal conductivity of bilayer graphene nanoribbon with interlayer bonding will be further reduced by tensile strain due to the intensification of phonon scattering and the reduction of phonon group velocity. The results show that the thermal conductivity of bilayer graphene nanoribbon can be controlled by interlayer bonding and tensile strain. These conclusions are of great significance in designing and thermally controlling of graphene based nanodevices.
      Corresponding author: Zhang Ren-Liang, zhrleo@ysu.edu.cn
    • Funds: Project supported by the Young Teachers Independent Research Projects of Yanshan University, China (Grant No. 020000534) and the Doctoral Fund of Yanshan University, China (Grant No. B919).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    King A, Johnson G, Engelberg D, Ludwig W, Marrow J 2008 Science 321 382Google Scholar

    [3]

    Novoselov K S, Morozov S V, Mohinddin T M G, Ponomarenko L A, Elias D C, Yang R, Barbolina I I, Blake P, Booth T J, Jiang D, Giesbers J, Hill E W, Geim A K 2007 Phys. Status Solidi B 244 4106Google Scholar

    [4]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [6]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [7]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [8]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [9]

    Xu Y, Chen X, Gu B, Duan W 2009 Appl. Phys. Lett. 95 233116Google Scholar

    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730Google Scholar

    [11]

    Kong B D, Paul S, Nardelli M B, Kim K W 2009 Phys. Rev. B 80 033406Google Scholar

    [12]

    Cao H, Guo Z, Xiang H, Gong X 2012 Phys. Lett. A 376 525Google Scholar

    [13]

    Chien S, Yang Y, Chen C O 2011 Appl. Phys. Lett. 98 33107Google Scholar

    [14]

    Pei Q, Sha Z, Zhang Y 2011 Carbon 49 4752Google Scholar

    [15]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [16]

    Morpurgo A F, Vandersypen L M K, Oostinga J B, Heersche H B, Liu X 2008 Nat. Mater. 7 151Google Scholar

    [17]

    Deng C C, Huang Y W, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [18]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [19]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [20]

    Wei Z, Ni Z, Bi K, Chen M, Chen Y 2011 Carbon 49 2653Google Scholar

    [21]

    Yu X X, Ma D K, Deng C C, Wan X, An M, Meng H, Li X B, Huang X M, Yang N 2021 Chin. Phys. Lett. 38 014401Google Scholar

    [22]

    Li Z, Wang Y, Ma M, Ma H, Hu W, Zhang X, Zhuge Z, Zhang S, Luo K, Gao Y, Sun L, Soldatov A V, Wu Y, Liu B, Li B, Ying P, Zhang Y, Xu B, He J, Yu D, Liu Z, Zhao Z, Yue Y, Tian Y, Li X 2023 Nat. Mater. 22 42Google Scholar

    [23]

    Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C, Espinosa H D 2008 Nat. Nanotechnol. 3 626Google Scholar

    [24]

    Kanasaki J, Inami E, Tanimura K, Ohnishi H, Nasu K 2009 Phys. Rev. Lett. 102 87402Google Scholar

    [25]

    Kvashnin A G, Chernozatonskii L A, Yakobson B I, Sorokin P B 2014 Nano Lett. 14 676Google Scholar

    [26]

    Rajabpour A, Vaez Allaei S M 2012 Appl. Phys. Lett. 101 53115Google Scholar

    [27]

    Guo T, Sha Z, Liu X, Zhang G, Guo T, Pei Q, Zhang Y 2015 Appl. Phys. A 120 1275Google Scholar

    [28]

    Yang L, Wan X, Ma D K, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [29]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 物理学报 72 034401Google Scholar

    Song Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [30]

    Chen Y, Wan J, Chen Y, Qin H, Liu Y, Pei Q, Zhang Y 2023 Int. J. Therm. Sci. 183 107871Google Scholar

    [31]

    Fan L, Yao W 2021 Diamond Relat. Mater. 118 108521Google Scholar

    [32]

    Huang Y W, Feng W T, Yu X X, Deng C C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [33]

    Feng W T, Yu X X, Wang Y, Ma D K, Sun Z J, Deng C C, Yang N 2019 Phys. Chem. Chem. Phys. 21 25072Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [36]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar

    [37]

    Xu X F, Pereira L F C, Wang Y, Wu J, Zhang K W, Zhao X M, Bae S, Tinh Bui C T, Xie R G, Thong J T L, Hong B H, Loh K P, Donadio D, Li B W, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [38]

    Hao F, Fang D, Xu Z 2011 Appl. Phys. Lett. 99 041901Google Scholar

    [39]

    Wei N, Xu L, Wang H, Zheng J 2011 Nanotechnology 22 105705Google Scholar

    [40]

    Polanco C A, Lindsay L 2018 Phys. Rev. B 98 014306Google Scholar

    [41]

    Dong L, Wu X S, Hu Y, Xu X F, Bao H 2021 Chin. Phys. Lett. 38 027202Google Scholar

    [42]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [43]

    Guo Z, Zhang D, Gong X 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [44]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [45]

    Xu K, Deng S C, Liang T, Cao X Z, Han M, Zeng X L, Zhang Z S, Yang N, Wu J Y 2022 Nanoscale 14 3078Google Scholar

    [46]

    Wang X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transfer 180 121821Google Scholar

    [47]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433Google Scholar

  • 图 1  (a) 非平衡分子动力学模拟模型图; (b) 模型侧视图; (c) 模型的局部放大图

    Figure 1.  (a) Model diagram of non- equilibrium molecular dynamics simulation; (b) model side view; (c) model partial enlarged view.

    图 2  模拟系统的温度沿X方向分布

    Figure 2.  Distribution of temperature in the X-direction of the simulation system.

    图 3  不同层间共价键浓度的模型图 (a) 层间共价键浓度为2.08%; (b) 层间共价键浓度为4.16%; (c) 层间共价键浓度为8.33%; (d) 层间共价键浓度为12.5%

    Figure 3.  Snapshot of model diagram of different interlayer covalent bond concentration: (a) interlayer covalent bond concentration of 2.08%; (b) interlayer covalent bond concentration of 4.16%; (c) interlayer covalent bond concentration of 8.33%; (d) interlayer covalent bond concentration of 12.5%

    图 4  层间共价键浓度对热导率的影响

    Figure 4.  Influence of interlayer covalent bond concentration on thermal conductivity.

    图 5  (a) 不同层间共价键浓度的双层石墨烯的面内PDOS; (b) 不同层间共价键浓度的双层石墨烯的面外PDOS; (c) 相同模型共价键区域和非共价键区域的面内PDOS; (d) 相同模型共价键区域和非共价键区域的面外PDOS

    Figure 5.  (a) In-plane PDOS of bilayer graphene with different interlayer covalent concentration; (b) the out-plane PDOS of bilayer graphene with different interlayer covalent concentration; (c) the in-plane PDOS of covalent and noncovalent bond regions in the same model; (d) the in-plane PDOS of covalent and noncovalent bond regions in the same model.

    图 6  层间共价键链呈不同角度时的模型图 (a) 层间共价键链呈0°; (b) 层间共价键链呈30°; (c) 层间共价键链呈60°; (d) 层间共价键链呈90°

    Figure 6.  Snapshot of model diagram of interlayer covalent bond chain at different angles: (a) 0° interlayer covalent bond chain; (b) 30° interlayer covalent bond chain; (c) 60° interlayer covalent bond chain; (d) 90° interlayer covalent bond chain

    图 7  层间共价键链的角度以及浓度对热导率的影响

    Figure 7.  Influences of the angle and concentration of the covalent bond chain on thermal conductivity.

    图 8  (a) 不同的层间共价键浓度下应变对热导率的影响; (b) 不同层间共价键链角度下应变对热导率的影响

    Figure 8.  (a) Influence of strain on thermal conductivity with different interlayer covalent bond concentrations; (b) influence of strain on thermal conductivity with different interlayer covalent bond chain angle.

    图 9  不同拉伸应变下具有层间共价键的双层石墨烯的面内声子态密度 (a) 层间共价键浓度为2.08%; (b) 层间共价键浓度为4.16%; (c) 层间共价键浓度为8.33%; (d) 层间共价键浓度为12.5%

    Figure 9.  In-plane PDOS of bilayer graphene with interlayer covalent bonds under different tensile strains: (a) Interlayer covalent bond concentration of 2.08%; (b) interlayer covalent bond concentration of 4.16%; (c) interlayer covalent bond concentration of 8.33%; (d) interlayer covalent bond concentration 12.5% interlayer covalent bond concentration.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    King A, Johnson G, Engelberg D, Ludwig W, Marrow J 2008 Science 321 382Google Scholar

    [3]

    Novoselov K S, Morozov S V, Mohinddin T M G, Ponomarenko L A, Elias D C, Yang R, Barbolina I I, Blake P, Booth T J, Jiang D, Giesbers J, Hill E W, Geim A K 2007 Phys. Status Solidi B 244 4106Google Scholar

    [4]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [6]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [7]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [8]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [9]

    Xu Y, Chen X, Gu B, Duan W 2009 Appl. Phys. Lett. 95 233116Google Scholar

    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730Google Scholar

    [11]

    Kong B D, Paul S, Nardelli M B, Kim K W 2009 Phys. Rev. B 80 033406Google Scholar

    [12]

    Cao H, Guo Z, Xiang H, Gong X 2012 Phys. Lett. A 376 525Google Scholar

    [13]

    Chien S, Yang Y, Chen C O 2011 Appl. Phys. Lett. 98 33107Google Scholar

    [14]

    Pei Q, Sha Z, Zhang Y 2011 Carbon 49 4752Google Scholar

    [15]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [16]

    Morpurgo A F, Vandersypen L M K, Oostinga J B, Heersche H B, Liu X 2008 Nat. Mater. 7 151Google Scholar

    [17]

    Deng C C, Huang Y W, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [18]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [19]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [20]

    Wei Z, Ni Z, Bi K, Chen M, Chen Y 2011 Carbon 49 2653Google Scholar

    [21]

    Yu X X, Ma D K, Deng C C, Wan X, An M, Meng H, Li X B, Huang X M, Yang N 2021 Chin. Phys. Lett. 38 014401Google Scholar

    [22]

    Li Z, Wang Y, Ma M, Ma H, Hu W, Zhang X, Zhuge Z, Zhang S, Luo K, Gao Y, Sun L, Soldatov A V, Wu Y, Liu B, Li B, Ying P, Zhang Y, Xu B, He J, Yu D, Liu Z, Zhao Z, Yue Y, Tian Y, Li X 2023 Nat. Mater. 22 42Google Scholar

    [23]

    Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C, Espinosa H D 2008 Nat. Nanotechnol. 3 626Google Scholar

    [24]

    Kanasaki J, Inami E, Tanimura K, Ohnishi H, Nasu K 2009 Phys. Rev. Lett. 102 87402Google Scholar

    [25]

    Kvashnin A G, Chernozatonskii L A, Yakobson B I, Sorokin P B 2014 Nano Lett. 14 676Google Scholar

    [26]

    Rajabpour A, Vaez Allaei S M 2012 Appl. Phys. Lett. 101 53115Google Scholar

    [27]

    Guo T, Sha Z, Liu X, Zhang G, Guo T, Pei Q, Zhang Y 2015 Appl. Phys. A 120 1275Google Scholar

    [28]

    Yang L, Wan X, Ma D K, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [29]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 物理学报 72 034401Google Scholar

    Song Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [30]

    Chen Y, Wan J, Chen Y, Qin H, Liu Y, Pei Q, Zhang Y 2023 Int. J. Therm. Sci. 183 107871Google Scholar

    [31]

    Fan L, Yao W 2021 Diamond Relat. Mater. 118 108521Google Scholar

    [32]

    Huang Y W, Feng W T, Yu X X, Deng C C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [33]

    Feng W T, Yu X X, Wang Y, Ma D K, Sun Z J, Deng C C, Yang N 2019 Phys. Chem. Chem. Phys. 21 25072Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [36]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar

    [37]

    Xu X F, Pereira L F C, Wang Y, Wu J, Zhang K W, Zhao X M, Bae S, Tinh Bui C T, Xie R G, Thong J T L, Hong B H, Loh K P, Donadio D, Li B W, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [38]

    Hao F, Fang D, Xu Z 2011 Appl. Phys. Lett. 99 041901Google Scholar

    [39]

    Wei N, Xu L, Wang H, Zheng J 2011 Nanotechnology 22 105705Google Scholar

    [40]

    Polanco C A, Lindsay L 2018 Phys. Rev. B 98 014306Google Scholar

    [41]

    Dong L, Wu X S, Hu Y, Xu X F, Bao H 2021 Chin. Phys. Lett. 38 027202Google Scholar

    [42]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [43]

    Guo Z, Zhang D, Gong X 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [44]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [45]

    Xu K, Deng S C, Liang T, Cao X Z, Han M, Zeng X L, Zhang Z S, Yang N, Wu J Y 2022 Nanoscale 14 3078Google Scholar

    [46]

    Wang X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transfer 180 121821Google Scholar

    [47]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433Google Scholar

  • [1] Yu Xin-Xiu, Li Duo-Sheng, Ye Yin, Lang Wen-Chang, Liu Jun-Hong, Chen Jing-Song, Yu Shuang-Shuang. Molecular dynamics simulation of effect of nickel transition layer on deposition of carbon atoms and graphene growth on cemented carbide surfaces. Acta Physica Sinica, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [2] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] Li Ting, Bi Xiao-Yue, Kong Jing-Wen. Mechanical and thermal properties of phosphorene under shear deformation. Acta Physica Sinica, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [4] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [6] Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [8] Xu Wen-Xue, Liang Xin-Gang, Xu Xiang-Hua, Zhu Yuan. Molecular dynamics simulation of effect of crosslinking on thermal conductivity of silicone rubber. Acta Physica Sinica, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [9] Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [10] Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system. Acta Physica Sinica, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [11] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [12] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [14] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [15] Li Wei, Feng Yan-Hui, Tang Jin-Jin, Zhang Xin-Xin. Thermal conductivity and thermal rectification of carbon nanotube Y junctions. Acta Physica Sinica, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [16] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [19] Wu Guo-Qiang, Kong Xian-Ren, Sun Zhao-Wei, Wang Ya-Hui. Molecular dynamics simulation on the out-of plane thermal conductivity of argon crystal thin films. Acta Physica Sinica, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
Metrics
  • Abstract views:  2549
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  28 July 2023
  • Accepted Date:  27 August 2023
  • Available Online:  20 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回