-
Photothermal sensing is crucial in developing smart wearable devices. However, designing and synthesizing luminescent materials with suitable multi-wavelength emission and constructing multiple sets of probes in a single material system is a huge challenge for constructing sensitive temperature sensors with a wide temperature range. In this paper, Pr3+, Er3+ single-doped and double-doped Li0.9K0.1NbO3 phosphors are successfully prepared by high temperature solid phase method, and their structures, morphologies, excitation wavelengths and temperature-dependent fluorescence properties are characterized by XRD, SEM, fluorescence spectrometer and self-made heating device. Firstly, the photoluminescences of the synthesized series of samples are investigated. The results show that comparing with the single-doped Li0.9K0.1NbO3: Er3+ sample, the up/down-conversion spectra of Pr3+, Er3+ co-doped phosphors under 808 nm/380 nm excitation show that the green fluorescence emission of Er3+ is enhanced. In addition, under 980 nm excitation, Pr3+ can effectively regulate the fluorescence energy level population pathway, so that the electrons are more effectively arranged in the 2H11/2 and 4S3/2 energy levels in the excitation process. The red emission is weakened and the green emission is enhanced, which improves the signal resolution of the fluorescent material and has a significant influence on the optical temperature measurement. Secondly, the up-conversion fluorescence property of Er3+ under 808 nm/980 nm laser excitation in Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+,Er3+ phosphors are investigated. The results show that the red and green fluorescence emissions of Er3+ are two-photon processes. Finally, the up/down-conversion dual-mode temperature sensing properties of Er3+ in Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+, Er3+ phosphors are investigated. It is found that both materials have good optical temperature measurement performances. The Pr3+ doping optimizes the dual-mode optical temperature measurement performances of Li0.9K0.1NbO3:Er3+ phosphors derived from the thermal coupling energy level of Er3+ ions. In addition, the up/down-conversion fluorescence mechanism of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Er3+, Pr3+ phosphors are proposed, and the enhanced green fluorescence by Pr3+ co-doping is attributed to the energy transfer from Pr3+ ions to Er3+ ions, leading to the increase of green fluorescence level population and the decrease of red fluorescence level population of the Er3+ ions. This new dual-mode optical temperature measurement material provides a material basis and optical temperature measurement technology for exploring other temperature measurement materials.
-
Keywords:
- niobate /
- up/down-conversion /
- multi-wavelength /
- temperature detection
[1] Abbas M T, Khan N Z, Mao J, Qiu L, Wei X, Chen Y, Khan S A 2022 Mater. Today Chem. 24 100903Google Scholar
[2] Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar
[3] Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar
[4] Chen Y H, Chen J, Tong Y, Zhang W N, Peng X S, Guo H, Huang D X 2021 J. Rare Earths 39 1512Google Scholar
[5] Tian Y, Tian B N, Cui C, Huang P, Wang L, Chen B J 2015 RSC Adv. 5 14123Google Scholar
[6] Zhang J, Chen J J, Jin C 2020 J. Alloys Compd. 846 156397Google Scholar
[7] León-Luis S F, Rodríguez-Mendoza U R, Martín I R, Lalla E, Lavín V 2013 Sens. Actuators, B 176 1167Google Scholar
[8] Alencar M A, Maciel G S, de Araújo C B, Patra A 2004 Appl. Phys. Lett. 84 4753Google Scholar
[9] Suo H, Guo C F, Li T 2016 J. Phys. Chem. C 120 2914Google Scholar
[10] Zheng W, Sun B Y, Li Y M, Lei T, Wang R, Wu J Z 2020 ACS Sustainable Chem. Eng. 8 9578Google Scholar
[11] Yu D C, Li H Y, Zhang D W, Zhang Q Y, Meijerink A, Suta M 2021 Light-Sci. Appl. 10 236Google Scholar
[12] Singh A K, Singh S K, Gupta B K, Prakash R, Rai S B 2013 Dalton Trans. 42 1065Google Scholar
[13] Zhao C L, Gao Y, Zhou D C, Zhu F M, Chen J Y, Qiu J B 2023 J. Alloys Compd. 944 169134Google Scholar
[14] Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar
[15] 阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提 2023 物理学报 72 060701Google Scholar
Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar
[16] Chen J, Guo J J, Chen Y H, Peng X S, Ashraf G A, Guo H 2021 J. Lumin. 238 118294Google Scholar
[17] Gao D L, Zhao D, Pan Y, Chai R P, Pang Q, Zhang X Y, Chen W 2021 Ceram. Int. 47 32000Google Scholar
[18] Li T, Guo C F, Zhou S H, Duan C K, Yin M 2015 J. Am. Ceram. Soc. 98 2812Google Scholar
[19] Wu Y F, Suo H, He D, Guo C F 2018 Mater. Res. Bull. 106 14Google Scholar
[20] Li X F, Guan L L, Li Y, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Chem. C 8 15685Google Scholar
[21] Gao D L, Gao F, Wu J L, Kuang Q Q, Xing C, Chen W 2022 Appl. Surf. Sci. 587 152820Google Scholar
[22] Jilili S, Aierken P, Wang Q L, Tuerxun A, Wang L, Sidike A 2022 Ceram. Int. 48 15755Google Scholar
[23] Maurya A, Bahadur A, Dwivedi A, Choudhary A K, Yadav T P, Vishwakarma P K, Rai S B 2018 J. Phys. Chem. Solids 119 228Google Scholar
[24] Gao D L, Gao J, Zhao D, Pang Q, Xiao G Q, Wang L L, Ma K W 2020 J. Mater. Chem. C 8 17318Google Scholar
[25] Tan S Y, Wang X S, Zhao Y, Li Y X, Yao X 2023 J. Lumin. 257 119747Google Scholar
[26] Lu H Y, Lu Y, Zhu J, Li J X, Wang J Y, Zou H 2023 Phys. Status Solidi RRL 17 2200379Google Scholar
[27] Kolesnikov I E, Mamonova D V, Kurochkin M A, Medvedev V A, Bai G X, Ivanova T Y, Kolesnikov E Y 2022 Phys. Chem. Chem. Phys. 24 15349Google Scholar
[28] Liu Y, Bai G X, Pan E, Hua Y J, Chen L, Xu S Q 2020 J. Alloys Compd. 822 153449Google Scholar
[29] Rakov N, Maciel G S 2014 Dalton Trans. 43 16025Google Scholar
[30] Cortés-Adasme E, Vega M, Martin I R, Llanos J 2017 RSC Adv. 7 46796Google Scholar
[31] Girisha H R, Lavanya D R, Daruka P B, Sharma S C, Nagabhushana H 2022 Opt. Mater. 134 113053Google Scholar
[32] Raju G S R, Pavitra E, Rao G M, Jeon T J, Jeon S W, Huh Y S, Han Y K 2018 J. Alloys Compd. 756 82Google Scholar
[33] Sahu M K, Jayasimhadri M, Haranath D 2022 Solid State Sci. 131 106956Google Scholar
[34] Fu J, Zhou L Y, Chen Y L, Lin J H, Ye R G, Lei L, Shen Y, Deng D G, Xu S 2023 J. Am. Ceram. Soc. 106 1333Google Scholar
[35] Zhu Y, Li X F, Guo Z Z, Sun H Q, Zhang Q W, Hao X H 2020 J. Am. Ceram. Soc. 103 3205Google Scholar
[36] Banwal A, Bokolia R 2022 Ceram. Int. 48 2230Google Scholar
[37] Fan Y, Xiao Q, Yin X M, Lv L, Wu X Y, Dong X Y, Xing M M, Tian Y, Luo X X 2022 Solid State Sci. 132 106966Google Scholar
[38] Liu Q, Pan E, Deng H, Liu F C 2023 Ceram. Int. 49 14981Google Scholar
[39] Chen Y L, Lin J H, Fu J, Ye R G, Lei L, Shen Y, Deng D G, Xu S Q 2022 J. Lumin. 252 119404Google Scholar
[40] Yin X M, Xiao Q, Lü L, Wu X Y, Dong X Y, Fan Y, Zhou N, Luo X X 2023 Spectrochim. Acta, Part A 291 122324Google Scholar
[41] Zhou W, Yang J, Jin X L, Peng Y, Luo J 2022 J. Lumin. 252 119275Google Scholar
[42] Liu Y W, Meng L S, Wang H, Jiao J X, Xing M M, Peng Y, Luo X X, Tian Y 2021 Dalton Trans. 50 960Google Scholar
-
图 2 Li0.9K0.1NbO3:Ln3+样品的SEM图片及EDX元素谱 (a) Li0.9K0.1NbO3:Er3+的SEM图片; (b) Li0.9K0.1NbO3:Pr3+, Er3+的SEM图片; (c) Li0.9K0.1NbO3:Er3+荧光粉的EDX元素分布图谱
Figure 2. SEM images and element mappings of Li0.9K0.1NbO3:Ln3+ phosphors: (a) SEM image of Li0.9K0.1NbO3:Er3+; (b) SEM image of Li0.9K0.1NbO3:Pr3+, Er3+; (c) EDX elemental distribution spectra of Li0.9K0.1NbO3:Er3+ phosphors.
图 3 不同波长激发下, Li0.9K0.1NbO3:Ln3+的上/下转换发射谱比较 (a) Pr3+和Er3+单掺样品及Pr3+, Er3+共掺样品的发射谱 (λex = 280 nm/380 nm); (b) Pr3+, Er3+共掺样品的激发谱(λmoni = 554 nm/620 nm); Er3+单掺及Pr3+, Er3+共掺样品在(c) λex= 808 nm, (d) 980 nm激光激发下的上转换发射谱
Figure 3. Comparison of up-conversion and down-conversion emission spectra of rare earth doped Li0.9K0.1NbO3:Ln3+ under different excitation wavelengths: (a) Emission spectra of Pr3+ and Er3+ single-doped samples and Pr3+, Er3+ co-doped samples (λex = 280 nm/380 nm); (b) excitation spectra of Pr3+, Er3+ co-doped samples (λmoni = 554 nm/620 nm); (c), (d) up-conversion emission spectra of Er3+ single doped and Pr3+, Er3+ co-doped samples under 808 and 980 nm excitations.
图 4 激发功率依赖的Li0.9K0.1NbO3:Er3+和Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的发射谱, 其中内插图为对应发光强度与入射激光的功率关系 (a), (b) Li0.9K0.1NbO3:Er3+荧光粉的发射谱(λex = 808 nm和λex = 980 nm); (c), (d) Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的发射谱(λex = 808 nm和λex = 980 nm)
Figure 4. Excitation power-dependent emission spectra of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+, Er3+ phosphors, where the insets are the relationships between luminescence intensity and incident laser power: (a), (b) Emission spectra of Li0.9K0.1NbO3:Er3+ phosphors (λex = 808 nm and λex = 980 nm); (c), (d) emission spectra of Li0.9K0.1NbO3:Pr3+, Er3+ phosphors (λex = 808 nm and λex = 980 nm).
图 5 Li0.9K0.1NbO3:Er3+荧光粉的上、下转换测温性能 (a)—(c) 分别在380, 808, 980 nm激发下的发射谱; (d)—(f) 相应于图(a)—(c)中的上/下转换发射谱的双峰绿色FIR与温度的关系; (g)—(i) 相应于图(d)—(f)中双峰荧光强度比率测温的灵敏度曲线
Figure 5. Up/down-conversion temperature measurement performance of Li0.9K0.1NbO3:Er3+ phosphor: (a)–(c) The emission spectra excited at 380, 808 and 980 nm, respectively; (d)–(f) the relationship between the bimodal green FIR and temperature corresponding to the up/down-conversion emission spectra in panel (a)–(c); (g)–(i) the sensitivity curves of temperature measurement of bimodal FIR corresponding to panel (d)–(f).
图 6 Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的上/下转换双模式光学测温性能 (a)—(c) 分别在380, 808, 980 nm激发下的发射谱; (d)—(f) 相应于图(a)—(c)中的上/下转换发射谱的双峰绿色FIR与温度的关系; (g)—(i) 相应于图(d)—(f)中双峰FIR测温的灵敏度曲线
Figure 6. Up/down-conversion temperature measurement performance of Li0.9K0.1NbO3:Pr3+, Er3+ phosphor: (a)–(c) The emission spectra excited at 380, 808, and 980 nm, respectively; (d)–(f) the relationship between the bimodal green FIR and temperature corresponding to the up/down-conversion emission spectra in panel (a)–(c); (g)–(i) the sensitivity curves of temperature measurement of bimodal FIR corresponding to panel (d)–(f).
表 1 基于FIR技术下不同基质中掺杂Er3+的温度传感材料光学参数
Table 1. Optical parameters of temperature sensing materials doped with Er3+ in different substrates based on FIR technology
Materials Wavelength/nm Sr-Max/(10–2 K–1) Sa-Max/(10–2 K–1) References SrSnO3:Er 975 nm 0.997(294 K) 0.791(368 K) [30] BaBiNb2O9:Er 980 nm 0.959(300 K) 0.996(483 K) [36] La2CaZnO5:Er 378 nm 1.454(300 K) — [31] Sr2Gd8(SiO4)6O2:Er 379 nm — 0.34(463 K) [32] Ca3Bi(PO4)3:Er 376 nm 1.21(300 K) 0.312(473 K) [33] La2Mo2O9:Er 980 nm 1.16(293 K) 0.527(493 K) [37] (K, Na)NbO3:Er 980 nm
375 nm0.96(303 K)
16.17(80 K)0.28(433 K)
0.37(280 K)[38] Cs3Bi2Cl9:Er 808 nm
980 nm1.4(303 K)
1.38(303 K)0.62(573 K)
0.61(573 K)[13] Li0.9K0.1NbO3:Er 380 nm
808 nm
980 nm0.97(303 K)
1.286(297 K)
1.221(297 K)0.44(463 K)
0.89(443 K)
0.81(443 K)This
work表 2 基于FIR技术下不同基质中掺杂Er3+-Ln3+的温度传感材料光学参数
Table 2. Optical parameters of temperature sensing materials doped with Er3+-Ln3+ in different substrates based on FIR technology.
Materials Wavelength/nm Sr-Max/(10–2 K–1) Sa-Max/(10–2 K–1) References La2MgGeO6:Bi, Er 980 nm 1.23(293 K) 0.94(473 K) [39] K3Gd(PO4)2:Yb, Er, Tm 980 nm 1.35(300 K) 0.456(608 K) [40] NaLuF4:Er, Tm 1532 nm 1.265(293 K) 0.4(519 K) [41] BiVO4:Er, Tm 980 nm 1.1(293 K) 0.7(473 K) [42] 1550 nm 1.1(293 K) 0.56(453 K) Y2SiO5:Er, Tm 808 nm 0.395(298 K) — [29] KYb(MoO4)2:Er, Gd 980 nm 1.1(303 K) 0.97(513 K) [25] KYb(MoO4)2:Er, La 1.1(303 K) 0.95(513 K) KYb(MoO4)2:Er, Y 1.11(303 K) 0.91(513 K) Li0.9K0.1NbO3:Pr, Er 380 nm 1.12(296 K) 0.54(434 K) This
work808 nm 1.284(296 K) 1.12(443 K) 980 nm 1.106(296 K) 0.83(443 K) -
[1] Abbas M T, Khan N Z, Mao J, Qiu L, Wei X, Chen Y, Khan S A 2022 Mater. Today Chem. 24 100903Google Scholar
[2] Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar
[3] Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar
[4] Chen Y H, Chen J, Tong Y, Zhang W N, Peng X S, Guo H, Huang D X 2021 J. Rare Earths 39 1512Google Scholar
[5] Tian Y, Tian B N, Cui C, Huang P, Wang L, Chen B J 2015 RSC Adv. 5 14123Google Scholar
[6] Zhang J, Chen J J, Jin C 2020 J. Alloys Compd. 846 156397Google Scholar
[7] León-Luis S F, Rodríguez-Mendoza U R, Martín I R, Lalla E, Lavín V 2013 Sens. Actuators, B 176 1167Google Scholar
[8] Alencar M A, Maciel G S, de Araújo C B, Patra A 2004 Appl. Phys. Lett. 84 4753Google Scholar
[9] Suo H, Guo C F, Li T 2016 J. Phys. Chem. C 120 2914Google Scholar
[10] Zheng W, Sun B Y, Li Y M, Lei T, Wang R, Wu J Z 2020 ACS Sustainable Chem. Eng. 8 9578Google Scholar
[11] Yu D C, Li H Y, Zhang D W, Zhang Q Y, Meijerink A, Suta M 2021 Light-Sci. Appl. 10 236Google Scholar
[12] Singh A K, Singh S K, Gupta B K, Prakash R, Rai S B 2013 Dalton Trans. 42 1065Google Scholar
[13] Zhao C L, Gao Y, Zhou D C, Zhu F M, Chen J Y, Qiu J B 2023 J. Alloys Compd. 944 169134Google Scholar
[14] Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar
[15] 阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提 2023 物理学报 72 060701Google Scholar
Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar
[16] Chen J, Guo J J, Chen Y H, Peng X S, Ashraf G A, Guo H 2021 J. Lumin. 238 118294Google Scholar
[17] Gao D L, Zhao D, Pan Y, Chai R P, Pang Q, Zhang X Y, Chen W 2021 Ceram. Int. 47 32000Google Scholar
[18] Li T, Guo C F, Zhou S H, Duan C K, Yin M 2015 J. Am. Ceram. Soc. 98 2812Google Scholar
[19] Wu Y F, Suo H, He D, Guo C F 2018 Mater. Res. Bull. 106 14Google Scholar
[20] Li X F, Guan L L, Li Y, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Chem. C 8 15685Google Scholar
[21] Gao D L, Gao F, Wu J L, Kuang Q Q, Xing C, Chen W 2022 Appl. Surf. Sci. 587 152820Google Scholar
[22] Jilili S, Aierken P, Wang Q L, Tuerxun A, Wang L, Sidike A 2022 Ceram. Int. 48 15755Google Scholar
[23] Maurya A, Bahadur A, Dwivedi A, Choudhary A K, Yadav T P, Vishwakarma P K, Rai S B 2018 J. Phys. Chem. Solids 119 228Google Scholar
[24] Gao D L, Gao J, Zhao D, Pang Q, Xiao G Q, Wang L L, Ma K W 2020 J. Mater. Chem. C 8 17318Google Scholar
[25] Tan S Y, Wang X S, Zhao Y, Li Y X, Yao X 2023 J. Lumin. 257 119747Google Scholar
[26] Lu H Y, Lu Y, Zhu J, Li J X, Wang J Y, Zou H 2023 Phys. Status Solidi RRL 17 2200379Google Scholar
[27] Kolesnikov I E, Mamonova D V, Kurochkin M A, Medvedev V A, Bai G X, Ivanova T Y, Kolesnikov E Y 2022 Phys. Chem. Chem. Phys. 24 15349Google Scholar
[28] Liu Y, Bai G X, Pan E, Hua Y J, Chen L, Xu S Q 2020 J. Alloys Compd. 822 153449Google Scholar
[29] Rakov N, Maciel G S 2014 Dalton Trans. 43 16025Google Scholar
[30] Cortés-Adasme E, Vega M, Martin I R, Llanos J 2017 RSC Adv. 7 46796Google Scholar
[31] Girisha H R, Lavanya D R, Daruka P B, Sharma S C, Nagabhushana H 2022 Opt. Mater. 134 113053Google Scholar
[32] Raju G S R, Pavitra E, Rao G M, Jeon T J, Jeon S W, Huh Y S, Han Y K 2018 J. Alloys Compd. 756 82Google Scholar
[33] Sahu M K, Jayasimhadri M, Haranath D 2022 Solid State Sci. 131 106956Google Scholar
[34] Fu J, Zhou L Y, Chen Y L, Lin J H, Ye R G, Lei L, Shen Y, Deng D G, Xu S 2023 J. Am. Ceram. Soc. 106 1333Google Scholar
[35] Zhu Y, Li X F, Guo Z Z, Sun H Q, Zhang Q W, Hao X H 2020 J. Am. Ceram. Soc. 103 3205Google Scholar
[36] Banwal A, Bokolia R 2022 Ceram. Int. 48 2230Google Scholar
[37] Fan Y, Xiao Q, Yin X M, Lv L, Wu X Y, Dong X Y, Xing M M, Tian Y, Luo X X 2022 Solid State Sci. 132 106966Google Scholar
[38] Liu Q, Pan E, Deng H, Liu F C 2023 Ceram. Int. 49 14981Google Scholar
[39] Chen Y L, Lin J H, Fu J, Ye R G, Lei L, Shen Y, Deng D G, Xu S Q 2022 J. Lumin. 252 119404Google Scholar
[40] Yin X M, Xiao Q, Lü L, Wu X Y, Dong X Y, Fan Y, Zhou N, Luo X X 2023 Spectrochim. Acta, Part A 291 122324Google Scholar
[41] Zhou W, Yang J, Jin X L, Peng Y, Luo J 2022 J. Lumin. 252 119275Google Scholar
[42] Liu Y W, Meng L S, Wang H, Jiao J X, Xing M M, Peng Y, Luo X X, Tian Y 2021 Dalton Trans. 50 960Google Scholar
Catalog
Metrics
- Abstract views: 2658
- PDF Downloads: 80
- Cited By: 0