-
The random scattering event of light by water medium is the primary reason for the degradation in underwater imaging. Underwater polarization imaging technology can enhance the signal-to-noise ratio of imaging effectively by utilizing the polarization information difference between background scattered light and target light. However, as scattering events increase in the water body, it is difficult to maintain the polarization characteristics of light, which reduces the effect of removing scattering based on polarization characteristics. In addition, the polarization rule of background scattered light in water is unclear, and there is a lack of quantitative description of the polarization characteristics of scattered light. Therefore, the study of polarization transmission characteristics of underwater scattered light is of great significance in reducing the scattering light of underwater polarization imaging. In order to clarify the polarization characteristics of underwater background scattered light, especially the polarization angle information, this paper proposes a method for ascertaining polarization angle of background light based on modified polarization difference imaging method. In this method, the coupling relationship between optimal weight coefficient and enhancement measure evaluation (EME) value of the Stokes vector difference result is analyzed, and the background light polarization angle is calculated based on the optimal weight coefficient. Combined with the experimental results, the EME distribution trend of the optimal weight coefficient and the modified polarization difference imaging method results in different turbidity water bodies are determined, the scattering suppression limit is explored, and the trend of background scattered light polarization direction with turbidity of water is analyzed. The results show that the proposed method can obtain the exact polarization angle of background scattered light in different water environments, revealing a trend that the polarization direction of background scattered light becomes orthogonal to the incident light direction as the turbidity of the water increases. This research provides a methodological basis for determining the polarization direction of the background scattered light in underwater imaging. -
Keywords:
- polarization /
- underwater imaging /
- scattering /
- optical information processing
[1] Liu F, Han P L, Wei Y, Yang K, Huang S Z, Li X, Zhang G, Bai L, Shao X P 2018 Opt. Lett. 43 4903Google Scholar
[2] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar
Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar
[3] Yang L M, Liang J, Zhang W F, Ju H J, Ren L Y, Shao X P 2019 Opt. Commun. 438 96Google Scholar
[4] Cariou J, Le J B, Lotrian J, Guern Y 1990 Appl. Opt. 29 1689Google Scholar
[5] Sabbah S, Shashar N 2007 J. Opt. Soc. Am. A 24 2049Google Scholar
[6] Cronin T W, Marshall J 2011 Phil. Trans. R. Soc. B 366 619Google Scholar
[7] Schechner Y Y, Karpel N 2004 Oceans ’04 MTS/IEEE Techno-Ocean ’04 Kobe, Japan, November 9–12, 2004 p1255
[8] Schechner Y Y, Karpel N 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington, DC, USA, 27 June, 2004 p536
[9] Karpel N, Schechner Y Y 2004 Conference on Polarization - Measurement, Analysis, and Remote Sensing VI Bellingham, WA, July 15, 2004 p106
[10] Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar
[11] 贺敬航, 段锦, 战俊彤, 赫立群, 蔡立娟, 张肃 2021 激光与光电子学进展 58 0529002Google Scholar
He J H, Duan J, Zhan J T, He L Q, Cai L J, Zhang S 2021 Laser Optoelectron. Prog. 58 0529002Google Scholar
[12] Van der Laan J D, Scrymgeour D A, Kemme S A, Dereniak E L 2015 Appl. Opt. 54 2266Google Scholar
[13] Hu H, Zhao L, Li X, Wang H, Yang J, Li K, Liu T 2018 Opt. Express 26 25047Google Scholar
[14] 陈养渭 2003 光学与光电技术 56 1719Google Scholar
Chen Y W 2003 Opt. Optoelectro. Technol. 56 1719Google Scholar
[15] 陈养渭 2000 舰船电子工程 20 15
Chen Y W 2000 Ship Electro. Eng. 20 15
[16] 孙晶华 2010 博士学位论文(哈尔滨: 哈尔滨工程大学)
Sun J H 2010 Ph. D. Dissertation (Harbin: Harbin Engineering University
[17] 管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203Google Scholar
Guan J G, Zhu J P, Tian H, Hou X, 2015 Acta Phys. Sin. 64 224203Google Scholar
[18] Tian H, Zhu J, Tan S, Zhang Y, Zhang Y, Li Y, Hou X 2018 Opt. Laser Technol. 108 515Google Scholar
[19] Tyo J S, Rowe M P, Pugh E N, Engheta N 1996 Appl. Opt. 35 1855Google Scholar
[20] Golestein D 2003 Polarized Light (2nd Ed.) (New York: Marcel Dekker) pp89, 90
[21] Agaian S S, Panetta K 2001 IEEE. T. Image Process. 10 367Google Scholar
[22] 杨晓伟, 殷高方, 赵南京, 甘婷婷, 杨瑞芳, 祝玮, 刘建国, 刘文清 2019 光谱学与光谱分析 39 2912Google Scholar
Chen X W, Yin G F, Zhao N J, Gan T T, Yang R F, Zhu W, Liu J G, Liu W Q 2019 Spectrosc. Spect. Anal. 39 2912Google Scholar
[23] Ntziachtistos V 2010 Nat. Meth. 7 603Google Scholar
-
表 1 传统探测结果和M-PDI探测结果EME值对比
Table 1. Comparison of EME values between traditional detection results and M-PDI detection results.
Types of turbidity/
NTUNormal detection result /EME M-PDI dectection
result/EME0 6.6119 12.2156 10 2.4624 4.5323 20 1.6951 3.6281 30 1.4843 4.5022 表 2 不同浊度条件背景光偏振方向变化数据
Table 2. Data on the variation of background light polarization direction under different turbidity conditions.
Turbidity/NTU α Turbidity/NTU α 0 44°42′49″ 18 28°5′20″ 2 44°42′49″ 20 27°18′45″ 4 44°42′49″ 22 27°44′57″ 6 44°42′49″ 24 26°12′7″ 8 44°42′49″ 26 26°1′22″ 10 44°42′49″ 28 25°19′27″ 12 32°53′10″ 30 25°19′27″ 14 29°43′47″ 32 24°39′80″ 16 28°53′40″ 34 24°29′34″ -
[1] Liu F, Han P L, Wei Y, Yang K, Huang S Z, Li X, Zhang G, Bai L, Shao X P 2018 Opt. Lett. 43 4903Google Scholar
[2] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar
Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar
[3] Yang L M, Liang J, Zhang W F, Ju H J, Ren L Y, Shao X P 2019 Opt. Commun. 438 96Google Scholar
[4] Cariou J, Le J B, Lotrian J, Guern Y 1990 Appl. Opt. 29 1689Google Scholar
[5] Sabbah S, Shashar N 2007 J. Opt. Soc. Am. A 24 2049Google Scholar
[6] Cronin T W, Marshall J 2011 Phil. Trans. R. Soc. B 366 619Google Scholar
[7] Schechner Y Y, Karpel N 2004 Oceans ’04 MTS/IEEE Techno-Ocean ’04 Kobe, Japan, November 9–12, 2004 p1255
[8] Schechner Y Y, Karpel N 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington, DC, USA, 27 June, 2004 p536
[9] Karpel N, Schechner Y Y 2004 Conference on Polarization - Measurement, Analysis, and Remote Sensing VI Bellingham, WA, July 15, 2004 p106
[10] Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar
[11] 贺敬航, 段锦, 战俊彤, 赫立群, 蔡立娟, 张肃 2021 激光与光电子学进展 58 0529002Google Scholar
He J H, Duan J, Zhan J T, He L Q, Cai L J, Zhang S 2021 Laser Optoelectron. Prog. 58 0529002Google Scholar
[12] Van der Laan J D, Scrymgeour D A, Kemme S A, Dereniak E L 2015 Appl. Opt. 54 2266Google Scholar
[13] Hu H, Zhao L, Li X, Wang H, Yang J, Li K, Liu T 2018 Opt. Express 26 25047Google Scholar
[14] 陈养渭 2003 光学与光电技术 56 1719Google Scholar
Chen Y W 2003 Opt. Optoelectro. Technol. 56 1719Google Scholar
[15] 陈养渭 2000 舰船电子工程 20 15
Chen Y W 2000 Ship Electro. Eng. 20 15
[16] 孙晶华 2010 博士学位论文(哈尔滨: 哈尔滨工程大学)
Sun J H 2010 Ph. D. Dissertation (Harbin: Harbin Engineering University
[17] 管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203Google Scholar
Guan J G, Zhu J P, Tian H, Hou X, 2015 Acta Phys. Sin. 64 224203Google Scholar
[18] Tian H, Zhu J, Tan S, Zhang Y, Zhang Y, Li Y, Hou X 2018 Opt. Laser Technol. 108 515Google Scholar
[19] Tyo J S, Rowe M P, Pugh E N, Engheta N 1996 Appl. Opt. 35 1855Google Scholar
[20] Golestein D 2003 Polarized Light (2nd Ed.) (New York: Marcel Dekker) pp89, 90
[21] Agaian S S, Panetta K 2001 IEEE. T. Image Process. 10 367Google Scholar
[22] 杨晓伟, 殷高方, 赵南京, 甘婷婷, 杨瑞芳, 祝玮, 刘建国, 刘文清 2019 光谱学与光谱分析 39 2912Google Scholar
Chen X W, Yin G F, Zhao N J, Gan T T, Yang R F, Zhu W, Liu J G, Liu W Q 2019 Spectrosc. Spect. Anal. 39 2912Google Scholar
[23] Ntziachtistos V 2010 Nat. Meth. 7 603Google Scholar
Catalog
Metrics
- Abstract views: 2416
- PDF Downloads: 101
- Cited By: 0