Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-scale analysis method of underwater polarization imaging

Han Ping-Li Liu Fei Zhang Guang Tao Yu Shao Xiao-Peng

Citation:

Multi-scale analysis method of underwater polarization imaging

Han Ping-Li, Liu Fei, Zhang Guang, Tao Yu, Shao Xiao-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Underwater polarization imaging is a valuable technology for underwater detection and exploration, since it can provide abundant information about target scene via the removal of background light from raw images. However, in a conventional polarization imaging method, the reconstructed image has limited quality caused by the inaccurate estimation of degree of polarization (DoP) and noise amplification, which finally leads to the incomplete removal of background light. The situation becomes worse if the target and background light reach an almost equal DoP.To date, various approaches including acoustic imaging, photoacoustic imaging, and polarization imaging have been implemented to realize underwater imaging. Notably, underwater polarization imaging is of particular interest due to its simple system structure, low cost and excellent performance in recovering target information. It mainly involves the separation of the backscattered light denoted as background light from the target scattered light acting as the target light. Removal of the background light from the raw image gives rise to a clear target image, which has been the focus of polarization imaging for a long period. The most representative approach was presented by Schechner[Schechner Y Y, Karpel N 2005 IEEE Journal of Oceanic Engineering 30 570] who utilized the DoP of background light and target light to recover clear image. Further optimization of the approach was also conducted by researchers including Schechner[Tali T, Schechner Y Y 2009 IEEE Transactions on Pattern Analysis and Machine Intelligence 31 385], Huang[Huang B J, Liu T G, Hu H F, Han J H, Yu M X 2016 Optics Express 24 9826], et al. However, the influence of noise amplification in the process on the reconstruction results has always been ignored, which accounts for the results to some extent though the explanation is unsatisfactory.In this paper, we present a multi-scale polarization imaging strategy to suppress the noise amplification effect and its influence on the final results. It originates from the difference in polarization image between two diverse layers. Specifically, the image is divided into two layers, one of which is characterized by high contrast but remarkably difference between the target and background, known as base layer BTI; the other layer is low-contrast but contains the detailed information about the target, known as detail layer DTI. Special processes are applied to the two layers according to their characteristics, respectively. For the base layer BTI, combined bilateral filtering is used to suppress noise. As for the detail layer, it is first processed by wavelet transform with considering its multi-resolution characteristic. After the wavelet coefficient correction via adjusting the kernel function w(x, f), the details in target image is perfected with keeping iterations. During the updating procedure, the image noise can be further suppressed. Underwater experiments are conducted in the laboratory to demonstrate the validity of the proposed method. Besides, quantitative analyses also verify the improvement in final target image.Compared with conventional underwater polarization imaging methods, the proposed method is good at dealing with various target conditions, since it handles noise amplification without requiring any additional equipment. Furthermore, the proposed method is easy to incorporate in a conventional polarization imaging system to achieve underwater images with better quality and valid detail information. Therefore, the proposed method has more potential applications in underwater imaging.
      Corresponding author: Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575154, 61475123), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61705175), the China Postdoctoral Science Foundation (Grant No. 2017M613063), the State Key Laboratory of Optical Technology for Applied Optics, Chang Chun Institute of Optics, Fine Mechanics and Physics, China (Grant No. CS16017050001), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB170503).
    [1]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Ocean. Eng. 41 541

    [2]

    George M J R, Kattawar W 1999 Appl. Opt. 38 6431

    [3]

    Harvey E S, Shortis M R 1998 Mar. Technol. Soc. J. 32 3

    [4]

    Zhao X W, Jin T, Chi H, Q S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 物理学报 64 104201]

    [5]

    Schechner Y Y, Averbuch Y 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 1655

    [6]

    Guan J G, Zhu J P, Heng T 2015 Chin. Phy. Lett. 32 074201

    [7]

    Lewis G D, Jordan D L, Roberts P J 1999 Appl. Opt. 38 3937

    [8]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570

    [9]

    Miller D A, Dereniak E L 2012 Appl. Opt. 51 4092

    [10]

    Kattawar W, Gray D J 2003 Appl. Opt. 42 7225

    [11]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385

    [12]

    Han J, Yang K, Xia M, Sun L, Cheng Z, Liu H, Ye J 2015 Appl. Opt. 54 3294

    [13]

    Huang B J, Liu T G, Han H F, Han J H, Yu M X 2016 Opt. Express 24 9826

    [14]

    Dubreuil M, Delrot P, Leonard I, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [15]

    Gilbert G D, Pernicka J C 1967 Appl. Opt. 6 741

    [16]

    Schettini R, Corchs S 2010 EURASIP J. Adv. Signal Process 2010 1

    [17]

    Liu F, Shao X P, Gao Y, Xiang L B, Han P L, Li G 2016 J. Opt. Soc. Am. A 33 237

    [18]

    Han P L, Liu F, Yang K, Ma J Y, Li J J, Shao X P 2017 Appl. Opt. 56 6631

    [19]

    Liu F, Shao X P, Xiang L B, Gao Y, Han P L, Wang L 2015 Chin. Phys. Lett. 32 114203

    [20]

    Zhao L Y, L B Y, Li X R, Chen S H 2015 Acta Phys. Sin. 64 124204 (in Chinese) [赵辽英, 吕步云, 厉小润, 陈淑涵 2015 物理学报 64 124204]

    [21]

    Knaus C, Zwicker M 2013 Proceedings of the 20th IEEE International Conference on Image Processing New Jersey, USA, September 15-18, 2013 p440

    [22]

    Liu F, Cao L, Shao X P, Han P L, Xiang L B 2015 Appl. Opt. 54 8116

    [23]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 物理学报 61 119501]

    [24]

    Papari G, Idowu N, Varslot T 2017 IEEE Trans. Image Process 26 251

    [25]

    Myint S W, Zhu T, Zheng B J 2015 IEEE Geosci. Remote Sens. 12 1232

    [26]

    Dubreuil M, Delrot P, Leonard P, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [27]

    Piederrière Y, Boulvert F, Cariou J, Jeune B L, Guern Y, Brun G L 2005 Opt. Express 13 5030

  • [1]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Ocean. Eng. 41 541

    [2]

    George M J R, Kattawar W 1999 Appl. Opt. 38 6431

    [3]

    Harvey E S, Shortis M R 1998 Mar. Technol. Soc. J. 32 3

    [4]

    Zhao X W, Jin T, Chi H, Q S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 物理学报 64 104201]

    [5]

    Schechner Y Y, Averbuch Y 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 1655

    [6]

    Guan J G, Zhu J P, Heng T 2015 Chin. Phy. Lett. 32 074201

    [7]

    Lewis G D, Jordan D L, Roberts P J 1999 Appl. Opt. 38 3937

    [8]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570

    [9]

    Miller D A, Dereniak E L 2012 Appl. Opt. 51 4092

    [10]

    Kattawar W, Gray D J 2003 Appl. Opt. 42 7225

    [11]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385

    [12]

    Han J, Yang K, Xia M, Sun L, Cheng Z, Liu H, Ye J 2015 Appl. Opt. 54 3294

    [13]

    Huang B J, Liu T G, Han H F, Han J H, Yu M X 2016 Opt. Express 24 9826

    [14]

    Dubreuil M, Delrot P, Leonard I, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [15]

    Gilbert G D, Pernicka J C 1967 Appl. Opt. 6 741

    [16]

    Schettini R, Corchs S 2010 EURASIP J. Adv. Signal Process 2010 1

    [17]

    Liu F, Shao X P, Gao Y, Xiang L B, Han P L, Li G 2016 J. Opt. Soc. Am. A 33 237

    [18]

    Han P L, Liu F, Yang K, Ma J Y, Li J J, Shao X P 2017 Appl. Opt. 56 6631

    [19]

    Liu F, Shao X P, Xiang L B, Gao Y, Han P L, Wang L 2015 Chin. Phys. Lett. 32 114203

    [20]

    Zhao L Y, L B Y, Li X R, Chen S H 2015 Acta Phys. Sin. 64 124204 (in Chinese) [赵辽英, 吕步云, 厉小润, 陈淑涵 2015 物理学报 64 124204]

    [21]

    Knaus C, Zwicker M 2013 Proceedings of the 20th IEEE International Conference on Image Processing New Jersey, USA, September 15-18, 2013 p440

    [22]

    Liu F, Cao L, Shao X P, Han P L, Xiang L B 2015 Appl. Opt. 54 8116

    [23]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 物理学报 61 119501]

    [24]

    Papari G, Idowu N, Varslot T 2017 IEEE Trans. Image Process 26 251

    [25]

    Myint S W, Zhu T, Zheng B J 2015 IEEE Geosci. Remote Sens. 12 1232

    [26]

    Dubreuil M, Delrot P, Leonard P, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [27]

    Piederrière Y, Boulvert F, Cariou J, Jeune B L, Guern Y, Brun G L 2005 Opt. Express 13 5030

  • [1] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun. Polarization multiplexing scattering imaging. Acta Physica Sinica, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [3] Xu Jing-Han, Wu Guo-Jun, Dong Jing, Yu Yang, Feng Fei, Liu Bo. Research on polarization characteristics of background light by modified polarization difference imaging method. Acta Physica Sinica, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [4] Gao Chen-Dong, Zhao Ming-Lin, Lu De-He, Dou Jian-Tai. Underwater polarization imaging based on two-layer multi-index optimization. Acta Physica Sinica, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [5] Sun Sheng, Wang Chao, Shi Hao-Dong, Fu Qiang, Li Ying-Chao. Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system. Acta Physica Sinica, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [6] Sun Xue-Ying, Liu Fei, Duan Jing-Bo, Niu Geng-Tian, Shao Xiao-Peng. Broadband scattering imaging technology based on common-mode rejection of polarization characteristic. Acta Physica Sinica, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [7] Liu Fei, Sun Shao-Jie, Han Ping-Li, Zhao Lin, Shao Xiao-Peng. Clear underwater vision in non-uniform scattering field by low-rank-and-sparse-decomposition-based olarization imaging. Acta Physica Sinica, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [8] Liu Bin, Zhao Peng-Xiang, Zhao Xia, Luo Yue, Zhang Li-Chao. Multiple aperture underwater imaging algorithm based on polarization information fusion. Acta Physica Sinica, 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [9] Yin Yu-Long, Sun Xiao-Bing, Song Mao-Xin, Chen Wei, Chen Fei-Nan. Phase delay error analysis of wave plate of division-of-amplitude full Stokes simultaneous polarization imaging system. Acta Physica Sinica, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [10] Wei Yi, Liu Fei, Yang Kui, Han Ping-Li, Wang Xin-Hua, Shao Xiao-Peng. Passive underwater polarization imaging detection method in neritic area. Acta Physica Sinica, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [11] Zheng Juan-Juan, Yao Bao-Li, Shao Xiao-Peng. Nonresonant background suppression in wide-field Coherent anti-Stokes Raman scattering microscopy with transport of intensity equation based phase imaging. Acta Physica Sinica, 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [12] Liu Jing, Jin Wei-Qi, Wang Xia, Lu Xiao-Tian, Wen Ren-Jie. A new algorithm for polarization information restoration with considering the property of optoelectronic polarimeter. Acta Physica Sinica, 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [13] Li Hao, Zhu Jing-Ping, Zhang Ning, Zhang Yun-Yao, Qiang Fan, Zong Kang. Effect of half wave plate angle mismatch on channel modulating imaging result and its compensation. Acta Physica Sinica, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [14] Xu Jie, Liu Fei, Liu Jie-Tao, Wang Jiao-Yang, Han Ping-Li, Zhou Cong-Hao, Shao Xiao-Peng. A design of real-time unipath polarization imaging system based on Wollaston prism. Acta Physica Sinica, 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [15] Qiang Fan, Zhu Jing-Ping, Zhang Yun-Yao, Zhang Ning, Li Hao, Zong Kang, Cao Ying-Yu. Reconstruction of polarization parameters in channel modulated polarization imaging system. Acta Physica Sinica, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [16] Zhao Xin-Wei, Jin Tao, Chi Hao, Qu Song. Modeling and simulation of the background light in underwater imaging under different illumination conditions. Acta Physica Sinica, 2015, 64(10): 104201. doi: 10.7498/aps.64.104201
    [17] Hou Jun-Feng, Wu Tai-Xia, Wang Dong-Guang, Deng Yuan-Yong, Zhang Zhi-Yong, Sun Ying-Zi. Study on compensation method of beam deviation in division of time imaging polarimetry. Acta Physica Sinica, 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [18] Guan Jin-Ge, Zhu Jing-Ping, Tian Heng, Hou Xun. Real-time polarization difference underwater imaging based on Stokes vector. Acta Physica Sinica, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [19] Li Jie, Zhu Jing-Ping, Qi Chun, Zheng Chuan-Lin, Gao Bo, Zhang Yun-Yao, Hou Xun. Static Fourier-transform hyperspectral imaging full polarimetry. Acta Physica Sinica, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [20] Kang Guo-Guo, Tan Qiao-Feng, Chen Wei-Li, Li Qun-Qing, Jin Wei-Qi, Jin Guo-Fan. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging. Acta Physica Sinica, 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
Metrics
  • Abstract views:  10321
  • PDF Downloads:  549
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2017
  • Accepted Date:  14 November 2017
  • Published Online:  05 March 2018

/

返回文章
返回